1,687 research outputs found

    Dissociation cross sections of ground-state and excited charmonia with light mesons in the quark model

    Get PDF
    We present numerical results for the dissociation cross sections of ground-state, orbitally- and radially-excited charmonia in collisions with light mesons. Our results are derived using the nonrelativistic quark model, so all parameters are determined by fits to the experimental meson spectrum. Examples of dissociation into both exclusive and inclusive final states are considered. The dissociation cross sections of several C=(+) charmonia may be of considerable importance for the study of heavy ion collisions, since these states are expected to be produced more copiously than the J/psi. The relative importance of the productions of ground-state and orbitally-excited charmed mesons in a pion-charmonium collision is demonstrated through the s\sqrt {s}-dependent charmonium dissociation cross sections.Comment: 9 pages, 8 figure

    Prioritized Sweeping Neural DynaQ with Multiple Predecessors, and Hippocampal Replays

    Full text link
    During sleep and awake rest, the hippocampus replays sequences of place cells that have been activated during prior experiences. These have been interpreted as a memory consolidation process, but recent results suggest a possible interpretation in terms of reinforcement learning. The Dyna reinforcement learning algorithms use off-line replays to improve learning. Under limited replay budget, a prioritized sweeping approach, which requires a model of the transitions to the predecessors, can be used to improve performance. We investigate whether such algorithms can explain the experimentally observed replays. We propose a neural network version of prioritized sweeping Q-learning, for which we developed a growing multiple expert algorithm, able to cope with multiple predecessors. The resulting architecture is able to improve the learning of simulated agents confronted to a navigation task. We predict that, in animals, learning the world model should occur during rest periods, and that the corresponding replays should be shuffled.Comment: Living Machines 2018 (Paris, France

    PEG Branched Polymer for Functionalization of Nanomaterials with Ultralong Blood Circulation

    Full text link
    Nanomaterials have been actively pursued for biological and medical applications in recent years. Here, we report the synthesis of several new poly(ethylene glycol) grafted branched-polymers for functionalization of various nanomaterials including carbon nanotubes, gold nanoparticles (NP) and gold nanorods (NRs), affording high aqueous solubility and stability for these materials. We synthesize different surfactant polymers based upon poly-(g-glutamic acid) (gPGA) and poly(maleic anhydride-alt-1-octadecene) (PMHC18). We use the abundant free carboxylic acid groups of gPGA for attaching lipophilic species such as pyrene or phospholipid, which bind to nanomaterials via robust physisorption. Additionally, the remaining carboxylic acids on gPGA or the amine-reactive anhydrides of PMHC18 are then PEGylated, providing extended hydrophilic groups, affording polymeric amphiphiles. We show that single-walled carbon nanotubes (SWNTs), Au NPs and NRs functionalized by the polymers exhibit high stability in aqueous solutions at different pHs, at elevated temperatures and in serum. Morever, the polymer-coated SWNTs exhibit remarkably long blood circulation (t1/2 22.1 h) upon intravenous injection into mice, far exceeding the previous record of 5.4 h. The ultra-long blood circulation time suggests greatly delayed clearance of nanomaterials by the reticuloendothelial system (RES) of mice, a highly desired property for in vivo applications of nanomaterials, including imaging and drug delivery

    Pairing, Charge, and Spin Correlations in the Three-Band Hubbard Model

    Full text link
    Using the Constrained Path Monte Carlo (CPMC) method, we simulated the two-dimensional, three-band Hubbard model to study pairing, charge, and spin correlations as a function of electron and hole doping and the Coulomb repulsion VpdV_{pd} between charges on neighboring Cu and O lattice sites. As a function of distance, both the dx2y2d_{x^2 - y^2}-wave and extended s-wave pairing correlations decayed quickly. In the charge-transfer regime, increasing VpdV_{pd} decreased the long-range part of the correlation functions in both channels, while in the mixed-valent regime, it increased the long-range part of the s-wave behavior but decreased that of the d-wave behavior. Still the d-wave behavior dominated. At a given doping, increasing VpdV_{pd} increased the spin-spin correlations in the charge-transfer regime but decreased them in the mixed-valent regime. Also increasing VpdV_{pd} suppressed the charge-charge correlations between neighboring Cu and O sites. Electron and hole doping away from half-filling was accompanied by a rapid suppression of anti-ferromagnetic correlations.Comment: Revtex, 8 pages with 15 figure

    Synthesis of Mesoporous Silica@Co–Al Layered Double Hydroxide Spheres: Layer-by-Layer Method and Their Effects on the Flame Retardancy of Epoxy Resins

    Get PDF
    Hierarchical mesoporous silica@Co–Al layered double hydroxide (m-SiO2@Co–Al LDH) spheres were prepared through a layer-by-layer assembly process, in order to integrate their excellent physical and chemical functionalities. TEM results depicted that, due to the electrostatic potential difference between m-SiO2 and Co–Al LDH, the synthetic m-SiO2@Co–Al LDH hybrids exhibited that m-SiO2 spheres were packaged by the Co–Al LDH nanosheets. Subsequently, the m-SiO2@Co–Al LDH spheres were incorporated into epoxy resin (EP) to prepare specimens for investigation of their flame-retardant performance. Cone results indicated that m-SiO2@Co–Al LDH incorporated obviously improved fire retardant of EP. A plausible mechanism of fire retardant was hypothesized based on the analyses of thermal conductivity, char residues, and pyrolysis fragments. Labyrinth effect of m-SiO2 and formation of graphitized carbon char catalyzed by Co–Al LDH play pivotal roles in the flame retardance enhancement

    Strong nodeless pairing on separate electron Fermi surface sheets in (Tl, K)Fe1.78_{1.78}Se2_2 probed by ARPES

    Full text link
    We performed a high-resolution angle-resolved photoemission spectroscopy study of the Tl0.63_{0.63}K0.37_{0.37}Fe1.78_{1.78}Se2_2 superconductor (Tc=29T_c=29 K). We show the existence of two electronlike bands at the M(π,0)(\pi, 0) point which cross the Fermi level at similar Fermi wave vectors to form nearly circular electronlike Fermi surface pockets. We observe a nearly isotropic \sim 8.5 meV superconducting gap (Δ/kBTc7\Delta/k_BT_c\sim 7) on these Fermi surfaces. Our analysis of the band structure around the Brillouin zone centre reveals two additional electronlike Fermi surfaces: a very small one and a larger one with kFk_F comparable to the FS pockets at M. Interestingly, a SC gap with a magnitude of \sim 8 meV also develops along the latter FS. Our observations are consistent with the s-wave strong coupling scenario.Comment: 5 pages, 4 figure

    Optimizing the diagnostic power with gastric emptying scintigraphy at multiple time points

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gastric Emptying Scintigraphy (GES) at intervals over 4 hours after a standardized radio-labeled meal is commonly regarded as the gold standard for diagnosing gastroparesis. The objectives of this study were: 1) to investigate the best time point and the best combination of multiple time points for diagnosing gastroparesis with repeated GES measures, and 2) to contrast and cross-validate Fisher's Linear Discriminant Analysis (LDA), a rank based Distribution Free (DF) approach, and the Classification And Regression Tree (CART) model.</p> <p>Methods</p> <p>A total of 320 patients with GES measures at 1, 2, 3, and 4 hour (h) after a standard meal using a standardized method were retrospectively collected. Area under the Receiver Operating Characteristic (ROC) curve and the rate of false classification through jackknife cross-validation were used for model comparison.</p> <p>Results</p> <p>Due to strong correlation and an abnormality in data distribution, no substantial improvement in diagnostic power was found with the best linear combination by LDA approach even with data transformation. With DF method, the linear combination of 4-h and 3-h increased the Area Under the Curve (AUC) and decreased the number of false classifications (0.87; 15.0%) over individual time points (0.83, 0.82; 15.6%, 25.3%, for 4-h and 3-h, respectively) at a higher sensitivity level (sensitivity = 0.9). The CART model using 4 hourly GES measurements along with patient's age was the most accurate diagnostic tool (AUC = 0.88, false classification = 13.8%). Patients having a 4-h gastric retention value >10% were 5 times more likely to have gastroparesis (179/207 = 86.5%) than those with ≤10% (18/113 = 15.9%).</p> <p>Conclusions</p> <p>With a mixed group of patients either referred with suspected gastroparesis or investigated for other reasons, the CART model is more robust than the LDA and DF approaches, capable of accommodating covariate effects and can be generalized for cross institutional applications, but could be unstable if sample size is limited.</p
    corecore