2,484 research outputs found

    The M2/M5 BPS Partition Functions from Supergravity

    Full text link
    In the framework of the AdS/CFT duality, we calculate the supersymmetric partition function of the superconformal field theories living in the world volume of either NN M2M2-branes or NN M5M5-branes. We used the dual supergravity partition function in a saddle point approximation over supersymmetric Black Holes. Since our BHs are written in asymptotically global AdSd+1AdS_{d+1} co-ordinates, the dual SCFTs are in RxSdR x S^{d} for d=2,5d=2,5. The resulting partition function shows phase transitions, constraints on the phase space and allowed us to identify unstable BPS Black hole in the AdSAdS phase. These configurations should correspond to unstable configurations in the dual theory. We also report an intriguing relation between the most general Witten Index, computed in the above theories, and our BPS partition functions.Comment: 9 pages, 2 columns, 4 figures, revtex, typos corrected, reference adde

    Effects Of Kaluza-Klein Excited W On Single Top Quark Production At Tevatron

    Full text link
    In extra dimension theories if the gauge bosons of the standard model propagate in the bulk of the extra dimensions then they will have Kaluza-Klein excitations that can couple to the standard model fermions. In this paper we study the effects of the first excited Kaluza-Klein mode of the W on single top production at the Tevatron. We find that the cross section for the single top production can be significantly reduced if the mass of the first Kaluza-Klein excited W1W \sim 1 TeV. Hence, a measurement of the single top production cross section smaller than the standard model prediction would not necessarily imply Vtb<1V_{tb} <1 or evidence of extra generation(s) of fermions mixed with the third generation.Comment: Text added, Latex, 16 pages, 3 figures, To appear in Phys. Lett.

    Patient pathways of tuberculosis care-seeking and treatment: an individual-level analysis of National Health Insurance data in Taiwan

    Get PDF
    Introduction Patients with tuberculosis (TB) often experience difficulties in accessing diagnosis and treatment. Patient pathway analysis identifies mismatches between TB patient care-seeking patterns and service coverage, but to date, studies have only employed cross-sectional aggregate data. Methods We developed an algorithmic approach to analyse and interpret patient-level routine data on healthcare use and to construct patients’ pathways from initial care-seeking to treatment outcome. We applied this to patients with TB in a simple random sample of one million patients’ records in the Taiwan National Health Insurance database. We analysed heterogeneity in pathway patterns, delays, service coverage and patient flows between different health system levels. Results We constructed 7255 pathways for 6258 patients. Patients most commonly initially sought care at the primary clinic level, where the capacity for diagnosing TB patients was 12%, before eventually initiating treatment at higher levels. Patient pathways are extremely heterogeneous prior to diagnosis, with the 10% most complex pathways accounting for 48% of all clinical encounters, and 55% of those pathways yet to initiate treatment after a year. Extended consideration of alternative diagnoses was more common for patients aged 65 years or older and for patients with chronic lung disease. Conclusion Our study demonstrates that longitudinal analysis of routine individual-level healthcare data can be used to generate a detailed picture of TB care-seeking pathways. This allows an understanding of several temporal aspects of care pathways, including lead times to care and the variability in patient pathways

    Chern-Simons Reduction and non-Abelian Fluid Mechanics

    Get PDF
    We propose a non-Abelian generalization of the Clebsch parameterization for a vector in three dimensions. The construction is based on a group-theoretical reduction of the Chern-Simons form on a symmetric space. The formalism is then used to give a canonical (symplectic) discussion of non-Abelian fluid mechanics, analogous to the way the Abelian Clebsch parameterization allows a canonical description of conventional fluid mechanics.Comment: 12 pages, REVTeX; revised for publication in Phys Rev D; email to [email protected]

    CX3CR1+ interstitial dendritic cells form a contiguous network throughout the entire kidney

    Get PDF
    Dendritic cells (DCs) interface innate and adaptive immunity in nonlymphoid organs; however, the exact distribution and types of DC within the kidney are not known. We utilized CX3CR1GFP/+ mice to characterize the anatomy and phenotype of tissue-resident CX3CR1+ DCs within normal kidney. Laser-scanning confocal microscopy revealed an extensive, contiguous network of stellate-shaped CX3CR1+ DCs throughout the interstitial and mesangial spaces of the entire kidney. Intravital microscopy of the superficial cortex showed stationary interstitial CX3CR1+ DCs that continually probe the surrounding tissue environment through dendrite extensions. Flow cytometry of renal CX3CR1+ DCs showed significant coexpression of CD11c and F4/80, high major histocompatibility complex class II and FcR expression, and immature costimulatory but competent phagocytic ability indicative of tissue-resident, immature DCs ready to respond to environment cues. Thus, within the renal parenchyma, there exists little immunological privilege from the surveillance provided by renal CX3CR1+ DCs, a major constituent of the heterogeneous mononuclear phagocyte system populating normal kidney

    On tolerable and desirable behaviors in supervisory control of discrete event systems

    Full text link
    We formulate and solve a new supervisory control problem for discrete event systems. The objective is to design a logical controller—or supervisor—such that the discrete event system satisfies a given set of requirements that involve event ordering. The controller must deal with a limited amount of controllability in the form of uncontrollable events. Our problem formulation considers that the requirements for the behavior (i.e., set of traces) of the controlled system are specified in terms of a “desired” behavior and a larger “tolerated” behavior. Due to the uncontrollable events, one may wish to tolerate behavior that sometimes exceeds the ideal desired behavior if overall this results in achieving more of the desired behavior. The general solution of our problem is completely characterized. The nonblocking solution is also analyzed in detail. This solution requires the study of a new class of controllable languages. Several results are proved about this class of languages. Algorithms to compute certain languages of interest within this class are also presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45034/1/10626_2005_Article_BF01797143.pd

    Electronic polarization in pentacene crystals and thin films

    Full text link
    Electronic polarization is evaluated in pentacene crystals and in thin films on a metallic substrate using a self-consistent method for computing charge redistribution in non-overlapping molecules. The optical dielectric constant and its principal axes are reported for a neutral crystal. The polarization energies P+ and P- of a cation and anion at infinite separation are found for both molecules in the crystal's unit cell in the bulk, at the surface, and at the organic-metal interface of a film of N molecular layers. We find that a single pentacene layer with herring-bone packing provides a screening environment approaching the bulk. The polarization contribution to the transport gap P=(P+)+(P-), which is 2.01 eV in the bulk, decreases and increases by only ~ 10% at surfaces and interfaces, respectively. We also compute the polarization energy of charge-transfer (CT) states with fixed separation between anion and cation, and compare to electroabsorption data and to submolecular calculations. Electronic polarization of ~ 1 eV per charge has a major role for transport in organic molecular systems with limited overlap.Comment: 10 revtex pages, 6 PS figures embedde

    On the existence of supergravity duals to D1--D5 CFT states

    Full text link
    We define a metric operator in the 1/2-BPS sector of the D1-D5 CFT, the eigenstates of which have a good semi-classical supergravity dual; the non-eigenstates cannot be mapped to semi-classical gravity duals. We also analyse how the data defining a CFT state manifests itself in the gravity side, and show that it is arranged into a set of multipoles. Interestingly, we find that quantum mechanical interference in the CFT can have observable manifestations in the semi-classical gravity dual. We also point out that the multipoles associated to the normal statistical ensemble fluctuate wildly, indicating that the mixed thermal state should not be associated to a semi-classical geometry.Comment: 22 pages, 2 figures. v2 : references added, typos correcte
    corecore