117,776 research outputs found
The heating of the thermal plasma with energetic electrons in small solar flares
The energetic electrons deduced from hard X-rays in the thick target model may be responsible for heating of soft X-ray plasma in solar flares. It is shown from OSO-7 studies that if a cutoff of 10 keV is assumed, the total electron is comparable to the thermal plasma energy. However, (1) the soft X-ray emission often appears to begin before the hard X-ray burst, (2) in about one-third of flares there is no detectable hard X-ray emission, and (3) for most events the energy content (assuming constant density) of soft X-ray plasma continues to rise after the end of the hard X-ray burst. To understand these problems we have analyzed the temporal relationship between soft X-rays and hard X-rays for 20 small events observed by ISEE-3 during 1980. One example is shown. The start of soft X-ray and hard X-ray bursts is defined as the time when the counting rates of the 4.8 to 5. keV and 25.8 to 43.2 keV channels, respectively, exceed the background by one standard deviation
Permutation Symmetric Critical Phases in Disordered Non-Abelian Anyonic Chains
Topological phases supporting non-abelian anyonic excitations have been
proposed as candidates for topological quantum computation. In this paper, we
study disordered non-abelian anyonic chains based on the quantum groups
, a hierarchy that includes the FQH state and the proposed
Fibonacci state, among others. We find that for odd these
anyonic chains realize infinite randomness critical {\it phases} in the same
universality class as the permutation symmetric multi-critical points of
Damle and Huse (Phys. Rev. Lett. 89, 277203 (2002)). Indeed, we show that the
pertinent subspace of these anyonic chains actually sits inside the symmetric sector of the Damle-Huse model, and this symmetry stabilizes the phase.Comment: 13 page
Green's function for the Relativistic Coulomb System via Sum Over Perturbation Series
We evaluate the Green's function of the D-dimensional relativistic Coulomb
system via sum over perturbation series which is obtained by expanding the
exponential containing the potential term in the path integral
into a power series. The energy spectra and wave functions are extracted from
the resulting amplitude.Comment: 13 pages, ReVTeX, no figure
Low Redshift QSO Lyman alpha Absorption Line Systems Associated with Galaxies
In this paper we present Monte-Carlo simulations of Lyman alpha absorption
systems which originate in galactic haloes, galaxy discs and dark matter (DM)
satellites around big central haloes. It is found that for strong Lyman alpha
absorption lines galactic haloes and satellites can explain ~20% and 40% of the
line number density of QSO absorption line key project respectively. If big
galaxies indeed possess such large numbers of DM satellites and they possess
gas, these satellites may play an important role for strong Lyman alpha lines.
However the predicted number density of Lyman-limit systems by satellites is
\~0.1 (per unit redshift), which is four times smaller than that by halo
clouds. Including galactic haloes, satellites and HI discs of spirals, the
predicted number density of strong lines can be as much as 60% of the HST
result. The models can also predict all of the observed Lyman-limit systems.
The average covering factor within 250 kpc/h is estimated to be ~0.36. And the
effective absorption radius of a galaxy is estimated to be ~150 kpc/h. The
models predict W_r propto rho^{-0.5} L_B^{0.15} (1+z)^{-0.5}. We study the
selection effects of selection criteria similar to the imaging and
spectroscopic surveys. We simulate mock observations through known QSO
lines-of-sight and find that selection effects can statistically tighten the
dependence of line width on projected distance. (abridged)Comment: 23 pages, 9 postscript figures; references updated, minor change in
section
Formation time distribution of dark matter haloes: theories versus N-body simulations
This paper uses numerical simulations to test the formation time distribution
of dark matter haloes predicted by the analytic excursion set approaches. The
formation time distribution is closely linked to the conditional mass function
and this test is therefore an indirect probe of this distribution. The
excursion set models tested are the extended Press-Schechter (EPS) model, the
ellipsoidal collapse (EC) model, and the non-spherical collapse boundary (NCB)
model. Three sets of simulations (6 realizations) have been used to investigate
the halo formation time distribution for halo masses ranging from dwarf-galaxy
like haloes (, where is the characteristic non-linear mass
scale) to massive haloes of . None of the models can match the
simulation results at both high and low redshift. In particular, dark matter
haloes formed generally earlier in our simulations than predicted by the EPS
model. This discrepancy might help explain why semi-analytic models of galaxy
formation, based on EPS merger trees, under-predict the number of high redshift
galaxies compared with recent observations.Comment: 7 pages, 5 figures, accepted for publication in MNRA
Probing annihilations and decays of low-mass galactic dark matter in IceCube DeepCore array: Track events
The deployment of DeepCore array significantly lowers IceCube's energy
threshold to about 10 GeV and enhances the sensitivity of detecting neutrinos
from annihilations and decays of light dark matter. To match this experimental
development, we calculate the track event rate in DeepCore array due to
neutrino flux produced by annihilations and decays of galactic dark matter. We
also calculate the background event rate due to atmospheric neutrino flux for
evaluating the sensitivity of DeepCore array to galactic dark matter
signatures. Unlike previous approaches, which set the energy threshold for
track events at around 50 GeV (this choice avoids the necessity of including
oscillation effect in the estimation of atmospheric background event rate), we
have set the energy threshold at 10 GeV to take the full advantage of DeepCore
array. We compare our calculated sensitivity with those obtained by setting the
threshold energy at 50 GeV. We conclude that our proposed threshold energy
significantly improves the sensitivity of DeepCore array to the dark matter
signature for GeV in the annihilation scenario and
GeV in the decay scenario.Comment: 19 pages, 5 figures; match the published versio
Remarks on the Theory of Cosmological Perturbation
It is shown that the power spectrum defined in the Synchronous Gauge can not
be directly used to calculate the predictions of cosmological models on the
large-scale structure of universe, which should be calculated directly by a
suitable gauge-invariant power spectrum or the power spectrum defined in the
Newtonian Gauge.Comment: 13 pages, 1 figure, minor changes, to be published in Chinese Physics
Letter
- …