3,471 research outputs found

    Equations of state and stability of MgSiO3_3 perovskite and post-perovskite phases from quantum Monte Carlo simulations

    Get PDF
    We have performed quantum Monte Carlo (QMC) simulations and density functional theory (DFT) calculations to study the equations of state of MgSiO3_3 perovskite (Pv) and post-perovskite (PPv), up to the pressure and temperature conditions of the base of Earth's lower mantle. The ground state energies were derived using QMC and the temperature dependent Helmholtz free energies were calculated within the quasi-harmonic approximation and density functional perturbation theory. The equations of state for both phases of MgSiO3_3 agree well with experiments, and better than those from generalized gradient approximation (GGA) calculations. The Pv-PPv phase boundary calculated from our QMC equations of states is also consistent with experiments, and better than previous LDA calculations. We discuss the implications for double crossing of the Pv-PPv boundary in the Earth

    Activity of Protein Kinase A Attached to Magnetic Beads

    Get PDF
    Development of high throughput assays is a crucial step in developing more efficient techniques that aid in many important areas of research today such as drug development or identification of protein structure function relationships. Integration of high throughput assays into more research efforts could drastically decrease the time and cost it takes for a new drug to hit the market. Protein Kinase A (PKA) is an extensively studied protein as it is highly upregulated in cancer and is a hot spot for drug targeting. In this work, azide-tagged PKA is covalently attached to magnetic beads using azide-alkyne cycloaddition, a well-known click chemistry reaction that selectively and covalently links two compounds. Modified PKA is attached to magnetic beads and the activity of the covalently bound PKA is determined. Significant levels of PKA activity can open the door to development of more efficient drug screening processes. It is anticipated that the azide-PKA conjugated beads will have significantly more PKA activity than beads treated with non-tagged PKA since there is specificity in binding between the azide-tagged PKA and the magnetic bead. Additionally, preliminary data using an inhibitor assay and ATP gradient scale suggests that linked PKA has similar chemical properties with native state PKA subject to the same treatments

    Uncertainty Evaluation in the Design of Structural Health Monitoring Systems for Damage Detection

    Get PDF
    The validation of structural health monitoring (SHM) systems for aircraft is complicated by the extent and number of factors that the SHM system must demonstrate for robust performance. Therefore, a time- and cost-efficient method for examining all of the sensitive factors must be conducted. In this paper, we demonstrate the utility of using the simulation modeling environment to determine the SHM sensitive factors that must be considered for subsequent experiments, in order to enable the SHM validation. We demonstrate this concept by examining the effect of SHM system configuration and flaw characteristics on the response of a signal from a known piezoelectric wafer active sensor (PWAS) in an aluminum plate, using simulation models of a particular hot spot. We derive the signal responses mathematically and through the statistical design of experiments, we determine the significant factors that affect the damage indices that are computed from the signal, using only half the number of runs that are normally required. We determine that the transmitter angle is the largest source of variation for the damage indices that are considered, followed by signal frequency and transmitter distance to the hot spot. These results demonstrate that the use of efficient statistical design and simulation may enable a cost- and time-efficient sequential approach to quantifying sensitive SHM factors and system validation

    Solution-Phase Synthesis of Heteroatom-Substituted Carbon Scaffolds for Hydrogen Storage

    Get PDF
    This paper reports a bottom-up solution-phase process for the preparation of pristine and heteroatom (boron, phosphorus, or nitrogen)-substituted carbon scaffolds that show good surface areas and enhanced hydrogen adsorption capacities and binding energies. The synthesis method involves heating chlorine-containing small organic molecules with metallic sodium at reflux in high-boiling solvents. For heteroatom incorporation, heteroatomic electrophiles are added to the reaction mixture. Under the reaction conditions, micrometer-sized graphitic sheets assembled by 3−5 nm-sized domains of graphene nanoflakes are formed, and when they are heteroatom-substituted, the heteroatoms are uniformly distributed. The substituted carbon scaffolds enriched with heteroatoms (boron ~7.3%, phosphorus ~8.1%, and nitrogen ~28.1%) had surface areas as high as 900 m^2 g^(−1) and enhanced reversible hydrogen physisorption capacities relative to pristine carbon scaffolds or common carbonaceous materials. In addition, the binding energies of the substituted carbon scaffolds, as measured by adsorption isotherms, were 8.6, 8.3, and 5.6 kJ mol^(−1) for the boron-, phosphorus-, and nitrogen-enriched carbon scaffolds, respectively

    CFD Code Validation of Wall Heat Fluxes for a G02/GH2 Single Element Combustor

    Get PDF
    This paper puts forth the case for the need for improved injector design tools to meet NASA s Vision for Space Exploration goals. Requirements for this improved tool are outlined and discussed. The potential for Computational Fluid Dynamics (CFD) to meet these requirements is noted along with its current shortcomings, especially relative to demonstrated solution accuracy. The concept of verification and validation is introduced as the primary process for building and quantifying the confidence necessary for CFD to be useful as an injector design tool. The verification and validation process is considered in the context of the Marshall Space Flight Center (MSFC) Combustion Devices CFD Simulation Capability Roadmap via the Simulation Readiness Level (SRL) concept. The portion of the validation process which demonstrates the ability of a CFD code to simulate heat fluxes to a rocket engine combustor wall is the focus of the current effort. The FDNS and Loci-CHEM codes are used to simulate a shear coaxial single element G02/GH2 injector experiment. The experiment was conducted a t a chamber pressure of 750 psia using hot propellants from preburners. A measured wall temperature profile is used as a boundary condition to facilitate the calculations. Converged solutions, obtained from both codes by using wall functions with the K-E turbulence model and integrating to the wall using Mentor s baseline turbulence model, are compared to the experimental data. The initial solutions from both codes revealed significant issues with the wall function implementation associated with the recirculation zone between the shear coaxial jet and the chamber wall. The FDNS solution with a corrected implementation shows marked improvement in overall character and level of comparison to the data. With the FDNS code, integrating to the wall with Mentor s baseline turbulence model actually produce a degraded solution when compared to the wall function solution with the K--E model. The Loci-CHEM solution, produced by integrating to the wall with Mentor s baseline turbulence model, matches both the heat flux rise rate in the near injector region and the peak heat flux level very well. However, it moderately over predicts the heat fluxes downstream of the reattachment point. The Loci-CHEM solution achieved by integrating to the wall with Mentor s baseline turbulence model was clearly superior to the other solutions produced in this effort

    Overcoming Obstacles in Protein Expression in the Yeast Pichia pastoris: Interviews of Leaders in the Pichia Field

    Get PDF
    The yeast Pichia pastoris (also known as Komagataella pastoris) has been used for over 30 years to produce thousands of valuable, heterologous proteins, such as insulin to treat diabetes and antibodies to prevent migraine headaches. Despite its success, there are some common, stubborn problems encountered by research scientists when they try to use the yeast to produce their recombinant proteins. In order to provide those working in this field with strategies to overcome these common obstacles, nine experts in P. pastoris protein expression field were interviewed to create a written review and video (https://www.youtube.com/watch?v=Q1oD6k8CdG8). This review describes how each respected scientist addressed a specific challenge, such as identifying high expression strains, improving secretion efficiency and decreasing hyperglycosylation. Their perspective and practical advice can be a tool to help empower others to express challenging proteins in this popular recombinant host

    Phase tunable holographic fabrication for three-dimensional photonic crystal templates by using a single optical element

    Get PDF
    This paper demonstrates a phase tunable holographic fabrication of three-dimensional photonic lattice structures using a single optical element. A top-cut four-side prism is employed to generate five-beam three-dimensional interference patterns. A silica glass slide is inserted into the optical path to adjust the phase of one interfering beam relative to other four beams. The phase control of the interfering laser beam renders the lattice of the interference pattern from a face-center tetragonal symmetry into a high contrast, interconnecting diamondlike symmetry. This method provides a flexible approach to fabricating three-dimensional photonic lattices with improved photonic band structures
    • …
    corecore