11 research outputs found

    The GALAH survey and Gaia DR2: (non-)existence of five sparse high-latitude open clusters

    Get PDF
    Sparse open clusters can be found at high galactic latitudes where loosely populated clusters are more easily detected against the lower stellar background. Because most star formation takes place in the thin disc, the observed population of clusters far from the Galactic plane is hard to explain. We combined spectral parameters from the GALAH survey with the Gaia DR2 catalogue to study the dynamics and chemistry of five old sparse high-latitude clusters in more detail. We find that four of them (NGC 1252, NGC 6994, NGC 7772, NGC 7826) – originally classified in 1888 – are not clusters but are instead chance projections on the sky. Member stars quoted in the literature for these four clusters are unrelated in our multidimensional physical parameter space; the quoted cluster properties in the literature are therefore meaningless. We confirm the existence of visually similar NGC 1901 for which we provide a probabilistic membership analysis. An overdensity in three spatial dimensions proves to be enough to reliably detect sparse clusters, but the whole six-dimensional space must be used to identify members with high confidence, as demonstrated in the case of NGC 1901

    Holistic spectroscopy: complete reconstruction of a wide-field, multiobject spectroscopic image using a photonic comb

    Get PDF
    The primary goal of Galactic archaeology is to learn about the origin of the Milky Way from the detailed chemistry and kinematics of millions of stars. Wide-field multifibre spectrographs are increasingly used to obtain spectral information for huge samples of stars. Some surveys (e.g. GALAH) are attempting to measure up to 30 separate elements per star. Stellar abundance spectroscopy is a subtle art that requires a very high degree of spectral uniformity across each of the fibres. However, wide-field spectrographs are notoriously non-uniform due to the fast output optics necessary to image many fibre outputs on to the detector. We show that precise spectroscopy is possible with such instruments across all fibres by employing a photonic comb – a device that produces uniformly spaced spots of light on the CCD to precisely map complex aberrations. Aberrations are parametrized by a set of orthogonal moments with ∼100 independent parameters. We then reproduce the observed image by convolving high-resolution spectral templates with measured aberrations as opposed to extracting the spectra from the observed image. Such a forward modelling approach also trivializes some spectroscopic reduction problems like fibre cross-talk, and reliably extracts spectra with a resolution ∼2.3 times above the nominal resolution of the instrument. Our rigorous treatment of optical aberrations also encourages a less conservative spectrograph design in the future

    The GALAH survey: Stellar streams and how stellar velocity distributions vary with Galactic longitude, hemisphere, and metallicity

    Get PDF
    Using GALAH (GALactic Archaeology with HERMES) survey data of nearby stars, we look at how structure in the planar (u, v) velocity distribution depends on metallicity and on viewing direction within the Galaxy. In nearby stars with distance d≲1 kpc, the Hercules stream is most strongly seen in higher metallicity stars [Fe/H] > 0.2. The Hercules stream peak v value depends on viewed galactic longitude, which we interpret as due to the gap between the stellar stream and more circular orbits being associated with a specific angular momentum value of about 1640 km s−1 kpc. The association of the gap with a particular angular momentum value supports a bar resonant model for the Hercules stream. Moving groups previously identified in Hipparcos(HIgh Precision Parallax COllecting Satellite) observations are easiest to see in stars nearer than 250 pc, and their visibility and peak velocities in the velocity distributions depends on both viewing direction (galactic longitude and hemisphere) and metallicity. We infer that there is fine structure in local velocity distributions that varies over distances of a few hundred pc in the Galaxy.Parts of this research were conducted by the Australian Research Council (ARC) Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project number CE170100013. JB-H acknowledges a Miller Professorship from the Miller Institute, UC Berkeley, and an ARC Laureate Fellowship which also supports GDS and SS. SM acknowledges support from the ARC through DECRA Fellowship DE140100598. JK is supported by an ARC DP grant awarded to JB-H and TB. MH is supported by ASTRO 3D Centre of Excellence funding to the University of Sydney and an ARC DP grant awarded to KF. LD gratefully acknowledges a scholarship from Zonta International District 24. LD and KF acknowledge support from ARC grant DP160103747. LC is the recipient of an ARC Future Fellowship (project number FT160100402)

    The GALAH survey: Properties of the Galactic disc(s) in the solar neighbourhood

    Get PDF
    Using data from the GALAH pilot survey, we determine properties of the Galactic thin and thick discs near the solar neighbourhood. The data cover a small range of Galactocentric radius (7.9 RGC 9.5 kpc), but extend up to 4 kpc in height from the Galactic plane, and several kpc in the direction of Galactic anti-rotation (at longitude 260◦ ≤ ≤ 280◦). This allows us to reliably measure the vertical density and abundance profiles of the chemically and kinematically defined ‘thick’ and ‘thin’ discs of the Galaxy. The thin disc (low-α population) exhibits a steep negative vertical metallicity gradient, at d[M/H]/dz = −0.18 ± 0.01 dex kpc−1, which is broadly consistent with previous studies. In contrast, its vertical α-abundance profile is almost flat, with a gradient of d[α/M]/dz = 0.008 ± 0.002 dex kpc−1. The steep vertical metallicity gradient of the low-α population is in agreement with models where radial migration has a major role in the evolution of the thin disc. The thick disc (high-α population) has a weaker vertical metallicity gradient d[M/H]/dz = −0.058 ± 0.003 dex kpc−1. The αabundance of the thick disc is nearly constant with height, d[α/M]/dz = 0.007 ± 0.002 dex kpc−1. The negative gradient in metallicity and the small gradient in [α/M] indicate that the high-α population experienced a settling phase, but also formed prior to the onset of major Type Ia supernova enrichment. We explore the implications of the distinct α-enrichments and narrow [α/M] range of the sub-populations in the context of thick disc formation.LD and MA acknowledge funding from the Australian Government through ARC Laureate Fellowship FL110100012. LD, KCF, and RFGW acknowledge support from ARC grant DP160103747. LC gratefully acknowledges support from the Australian Research Council (grants DP150100250, FT160100402). DMN was supported by the Allan C. and Dorothy H. Davis Fellowship. DS is the recipient of an Australian Research Council Future Fellowship (project number FT1400147). TZ acknowledges financial support from the Slovenian Research Agency (research core funding No. P1-0188). Part of this research was supported by the Munich Institute for Astro- and Particle Physics (MIAPP) of the DFG cluster of excellence ‘Origin and Structure of the Universe’

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The vertical metallicity gradients of mono-age stellar populations in the Milky Way with the RAVE and Gaia data

    Get PDF
    We investigate the vertical metallicity gradients of five mono-age stellar populations between 0 and 11 Gyr for a sample of 18 435 dwarf stars selected from the cross-matched Tycho-Gaia Astrometric Solution and Radial Velocity Experiment (RAVE) Data Release 5. We find a correlation between the vertical metallicity gradients and age, with no vertical metallicity gradient in the youngest population and an increasingly steeper negative vertical metallicity gradient for the older stellar populations. The metallicity at disc plane remains almost constant between 2 and 8 Gyr, and it becomes significantly lower for the 8 < τ ≤ 11 Gyr population. The current analysis also reveals that the intrinsic dispersion in metallicity increases steadily with age. We discuss that our results are consistent with a scenario that (thin) disc stars formed from a flaring (thin) star-forming disc.IC, DK, and MC acknowledge the support of the UK’s Science and Technology Facilities Council (STFC Grant ST/K000977/1 and ST/N000811/1). IC is also grateful the STFC Doctoral Training Partnerships Grant (ST/N504488/1). LC is supported by Australian Research Council Future Fellowship FT160100402

    Detailed chemical compositions of the wide binary HD 80606/80607: revised stellar properties and constraints on planet formation

    Get PDF
    Differences in the elemental abundances of planet-hosting stars in binary systems can give important clues and constraints about planet formation and evolution. In this study we performed a high-precision, differential elemental abundance analysis of a wide binary system, HD 80606/80607, based on high-resolution spectra with high signal-to-noise ratio obtained with Keck/HIRES. HD 80606 is known to host a giant planet with the mass of four Jupiters, but no planet has been detected around HD 80607 so far. We determined stellar parameters as well as abundances for 23 elements for these two stars with extremely high precision. Our main results are that (i) we confirmed that the two components share very similar chemical compositions, but HD 80606 is marginally more metal-rich than HD 80607, with an average difference of +0.013 ± 0.002 dex (σ = 0.009 dex); and (ii) there is no obvious trend between abundance differences and condensation temperature. Assuming that this binary formed from material with the same chemical composition, it is difficult to understand how giant planet formation could produce the present-day photospheric abundances of the elements we measure. We cannot exclude the possibility that HD 80606 might have accreted about 2.5 to 5 MEarth material onto its surface, possibly from a planet destabilised by the known highly eccentric giant.F.L. and S.F. acknowledge support by the grant “The New Milky Way” from the Knut and Alice Wallenberg Foundation. F.L. was also supported by the Swedish Research Council (grant 2012–2254). This work has been supported by the Australian Research Council (grants FL110100012, FT140100554 and DP120100991). J.M. acknowledges support by FAPESP (2012/24392–2). A.J.M is supported by the grant “Impact” from the Knut and Alice Wallenberg Foundation

    The GALAH survey: chemical tagging of star clusters and new members in the Pleiades

    Get PDF
    The technique of chemical tagging uses the elemental abundances of stellar atmospheres to ‘reconstruct’ chemically homogeneous star clusters that have long since dispersed. The GALAH spectroscopic survey – which aims to observe one million stars using the Anglo-Australian Telescope – allows us to measure up to 30 elements or dimensions in the stellar chemical abundance space, many of which are not independent. How to find clustering reliably in a noisy high-dimensional space is a difficult problem that remains largely unsolved. Here, we explore t-distributed stochastic neighbour embedding (t-SNE) – which identifies an optimal mapping of a high-dimensional space into fewer dimensions – whilst conserving the original clustering information. Typically, the projection is made to a 2D space to aid recognition of clusters by eye. We show that this method is a reliable tool for chemical tagging because it can: (i) resolve clustering in chemical space alone, (ii) recover known open and globular clusters with high efficiency and low contamination, and (iii) relate field stars to known clusters. t-SNE also provides a useful visualization of a high-dimensional space. We demonstrate the method on a data set of 13 abundances measured in the spectra of 187 000 stars by the GALAH survey. We recover seven of the nine observed clusters (six globular and three open clusters) in chemical space with minimal contamination from field stars and low numbers of outliers. With chemical tagging, we also identify two Pleiades supercluster members (which we confirm kinematically), one as far as 6° – one tidal radius away from the cluster centre

    Genome-Wide Association Study Meta-Analysis of Long-Term Average Blood Pressure in East Asians

    No full text
    BackgroundGenome-wide single marker and gene-based meta-analyses of long-term average (LTA) blood pressure (BP) phenotypes may reveal novel findings for BP.Methods and resultsWe conducted genome-wide analysis among 18 422 East Asian participants (stage 1) followed by replication study of ≤46 629 participants of European ancestry (stage 2). Significant single-nucleotide polymorphisms and genes were determined by a P&lt;5.0×10-8 and 2.5×10-6, respectively, in joint analyses of stage-1 and stage-2 data. We identified 1 novel ARL3 variant, rs4919669 at 10q24.32, influencing LTA systolic BP (stage-1 P=5.03×10-8, stage-2 P=8.64×10-3, joint P=2.63×10-8) and mean arterial pressure (stage-1 P=3.59×10-9, stage-2 P=2.35×10-2, joint P=2.64×10-8). Three previously reported BP loci (WBP1L, NT5C2, and ATP2B1) were also identified for all BP phenotypes. Gene-based analysis provided the first robust evidence for association of KCNJ11 with LTA systolic BP (stage-1 P=8.55×10-6, stage-2 P=1.62×10-5, joint P=3.28×10-9) and mean arterial pressure (stage-1 P=9.19×10-7, stage-2 P=9.69×10-5, joint P=2.15×10-9) phenotypes. Fourteen genes (TMEM180, ACTR1A, SUFU, ARL3, SFXN2, WBP1L, CYP17A1, C10orf32, C10orf32-ASMT, AS3MT, CNNM2, and NT5C2 at 10q24.32; ATP2B1 at 12q21.33; and NCR3LG1 at 11p15.1) implicated by previous genome-wide association study meta-analyses were also identified. Among the loci identified by the previous genome-wide association study meta-analysis of LTA BP, we transethnically replicated associations of the KCNK3 marker rs1275988 at 2p23.3 with LTA systolic BP and mean arterial pressure phenotypes (P=1.27×10-4 and 3.30×10-4, respectively).ConclusionsWe identified 1 novel variant and 1 novel gene and present the first direct evidence of relevance of the KCNK3 locus for LTA BP among East Asians
    corecore