36 research outputs found

    Multi-Frequency-Aware Patch Adversarial Learning for Neural Point Cloud Rendering

    Full text link
    We present a neural point cloud rendering pipeline through a novel multi-frequency-aware patch adversarial learning framework. The proposed approach aims to improve the rendering realness by minimizing the spectrum discrepancy between real and synthesized images, especially on the high-frequency localized sharpness information which causes image blur visually. Specifically, a patch multi-discriminator scheme is proposed for the adversarial learning, which combines both spectral domain (Fourier Transform and Discrete Wavelet Transform) discriminators as well as the spatial (RGB) domain discriminator to force the generator to capture global and local spectral distributions of the real images. The proposed multi-discriminator scheme not only helps to improve rendering realness, but also enhance the convergence speed and stability of adversarial learning. Moreover, we introduce a noise-resistant voxelisation approach by utilizing both the appearance distance and spatial distance to exclude the spatial outlier points caused by depth noise. Our entire architecture is fully differentiable and can be learned in an end-to-end fashion. Extensive experiments show that our method produces state-of-the-art results for neural point cloud rendering by a significant margin. Our source code will be made public at a later date.Comment: 8 pages, 4 figure

    Differentially Expressed Potassium Channels Are Associated with Function of Human Effector Memory CD8+T cells

    Get PDF
    The voltage-gated potassium channel, Kv1.3, and the Ca2+-activated potassium channel, KCa3.1, regulate membrane potentials in T cells, thereby controlling T cell activation and cytokine production. However, little is known about the expression and function of potassium channels in human effector memory ( EM) CD8+ T cells that can be further divided into functionally distinct subsets based on the expression of the interleukin ( IL)-7 receptor alpha ( IL-7R alpha) chain. Herein, we investigated the functional expression and roles of Kv1.3 and KCa3.1 in EM CD8+ T cells that express high or low levels of the IL-7 receptor alpha chain ( IL-7R alpha(high) and IL-7R alpha(low), respectively). In contrast to the significant activity of Kv1.3 and KCa3.1 in IL-7Rahigh EM CD8+ T cells, IL-7Ralow EM CD8+ T cells showed lower expression of Kv1.3 and insignificant expression of KCa3.1. Kv1.3 was involved in the modulation of cell proliferation and IL-2 production, whereas KCa3.1 affected the motility of EM CD8+ T cells. The lower motility of IL-7Ralow EM CD8+ T cells was demonstrated using transendothelial migration and motility assays with intercellular adhesion molecule 1-and/or chemokine stromal cell-derived factor-1 alpha-coated surfaces. Consistent with the lower migration property, IL-7Ralow EM CD8+ T cells were found less frequently in human skin. Stimulating IL-7Ralow EM CD8+ T cells with IL-2 or IL-15 increased their motility and recovery of KCa3.1 activity. Our findings demonstrate that Kv1.3 and KCa3.1 are differentially involved in the functions of EM CD8+ T cells. The weak expression of potassium channels in IL-7Ralow EM CD8+ T cells can be revived by stimulation with IL-2 or IL-15, which restores the associated functions. This study suggests that IL-7Rahigh EM CD8+ T cells with functional potassium channels may serve as a reservoir for effector CD8+ T cells during peripheral inflammation.112Ysciescopu

    The Gut Microbiota and Respiratory Diseases: New Evidence

    No full text
    Human body surfaces, such as the skin, intestines, and respiratory and urogenital tracts, are colonized by a large number of microorganisms, including bacteria, fungi, and viruses, with the gut being the most densely and extensively colonized organ. The microbiome plays an essential role in immune system development and tissue homeostasis. Gut microbiota dysbiosis not only modulates the immune responses of the gastrointestinal (GI) tract but also impacts the immunity of distal organs, such as the lung, further affecting lung health and respiratory diseases. Here, we review the recent evidence of the correlations and underlying mechanisms of the relationship between the gut microbiota and common respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), lung cancer, and respiratory infection, and probiotic development as a therapeutic intervention for these diseases

    Preparation of boronic acid-functionalized cryogels using modular and clickable building blocks for bacterial separation

    No full text
    Composite cryogels containing boronic acid ligands are synthesized for effective separation and isolation of bacteria. The large and interconnected pores in cryogels enable fast binding and release of microbial cells. To control bacterial binding, an alkyne-tagged boronic acid ligand is conjugated to azide-functionalized cryogel via the Cu(I)-catalyzed azide−alkyne cycloaddition reaction. The boronic acid-functionalized cryogel binds Gram-positive and Gram-negative bacteria through reversible boronate ester bonds, which can be controlled by pH and simple monosaccharides. To increase the capacity of affinity separation, a new approach is used to couple the alkyne-tagged phenylboronic acid to cryogel via an intermediate polymer layer that provides multiple immobilization sites. The morphology and chemical composition of the composite cryogel are characterized systematically. The capability of the composite cryogel for the separation of Gram-positive and Gram-negative bacteria is investigated. The binding capacities of the composite cryogel for Escherichia coli and Staphylococcus epidermidis are 2.15 × 109 and 3.36 × 109 cfu/g, respectively. The bacterial binding of the composite cryogel can be controlled by adjusting pH. The results suggest that the composite cryogel may be used as affinity medium for rapid separation and isolation of bacteria from complex samples

    Photoconjugation of temperature- and pH-responsive polymer with silica nanoparticles for separation and enrichment of bacteria

    No full text
    A new photoconjugation approach was developed to prepare nanoparticle-supported boronic acid polymer for effective separation and enrichment of bacteria. The photo-activated polymer immobilization was demonstrated by coupling an azide-modified copolymer of N-isopropylacrylamide and glycidyl methacrylate to a perfluorophenyl azide-modified silica surface. The thermoresponsive polymer was synthesized using reversible addition fragmentation chain transfer polymerization followed by conversion of the pendant epoxides into azide groups. The perfluorophenyl azide-modified silica nanoparticles were synthesized by an amidation reaction between amino-functionalized silica and pentafluorobenzoyl chloride, and a subsequent treatment with sodium azide. Bacteria-capturing boronic acid was conjugated to the silica-supported polymer chains via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction. The particle size, morphology and organic content of the composite nanoparticles were characterized systematically. The capability of the nanocomposite to bind Gram-positive and Gram-negative bacteria was investigated. The nanocomposite exhibited high binding capacities for E. coli (13.4 × 107 CFU/mg) and S. epidermidis (7.66 × 107 CFU/mg) in phosphate buffered saline. The new photoconjugation strategy enables fast and straightforward grafting of functional polymers on surface, which opens many new opportunities for designing functional materials for bioseparation and biosensing

    WILLINGNESS TO PAY FOR IMPLEMENTING HACCP SYSTEMS IN CHINA’S SMALL AND MEDIUM-SIZED FOOD ENTERPRISES

    No full text
    In China, a large number of small and medium-sized food enterprises (food SMEs) rarely adopt the hazard analysis and critical control points (HACCP) system, which results in a low product quality. Some local governments have encouraged food SMEs to implement HACCP systems through financial subsidies, but because of an incomplete understanding of the willingness to pay (WTP) for implementing HACCP systems in food SMEs, relevant policies have not enhanced the adoption rate of HACCP systems. Based on our questionnaire survey data of 132 food SMEs in China's Henan, Guangdong, and Zhejiang provinces, this study estimates Chinese food SMEs' WTP for implementing HACCP systems by a double bounded dichotomous choice contingent valuation method (CVM). According to the estimated results, the WTP for implementing HACCP systems under the log-logistic model is approximately 115,714 Chinese RMB (113,149 Chinese RMB for the log-normal model)

    A Hybrid Improved Whale Optimization Algorithm with Support Vector Machine for Short-Term Photovoltaic Power Prediction

    No full text
    Presently, the grid-connected scale from photovoltaic (PV) system is getting higher among renewable power generations. However, the PV output power can be affected by different meteorological conditions due to PV randomness and volatility. Accordingly, reasonable generation plans can be well arranged using accurate PV power prediction among various types of energy sources, thus reducing the effect of PV system on the grid. To resolve this problem, a PV output power prediction model, namely IMWOASVM, is proposed based on the combination of improved whale optimization algorithm (IMWOA) and support vector machine (SVM). The IMWOA is used to optimize the kernel function parameter and penalty coefficient in SVM. The optimal parameter and coefficient values can then be input to SVM for enhancing the PV prediction. The performance results verify that the coefficient of determination using the IMWOA model can reach beyond 99% in both sunny and cloudy days. Simultaneously, the mean absolute errors on sunny and cloudy days are 0.0251 and 0.0705, respectively. The root mean square errors in sunny and cloudy days are 2.17% and 1.03%, respectively. The results confirm that the proposed model effectively increases the accuracy of the PV output power prediction and is superior to existing methods

    Multi-omic analysis characterizes molecular susceptibility of receptors to SARS-CoV-2 spike protein

    No full text
    In the post COVID-19 era, new SARS-CoV-2 variant strains may continue emerging and long COVID is poised to be another public health challenge. Deciphering the molecular susceptibility of receptors to SARS-CoV-2 spike protein is critical for understanding the immune responses in COVID-19 and the rationale of multi-organ injuries. Currently, such systematic exploration remains limited. Here, we conduct multi-omic analysis of protein binding affinities, transcriptomic expressions, and single-cell atlases to characterize the molecular susceptibility of receptors to SARS-CoV-2 spike protein. Initial affinity analysis explains the domination of delta and omicron variants and demonstrates the strongest affinities between BSG (CD147) receptor and most variants. Further transcriptomic data analysis on 4100 experimental samples and single-cell atlases of 1.4 million cells suggest the potential involvement of BSG in multi-organ injuries and long COVID, and explain the high prevalence of COVID-19 in elders as well as the different risks for patients with underlying diseases. Correlation analysis validated moderate associations between BSG and viral RNA abundance in multiple cell types. Moreover, similar patterns were observed in primates and validated in proteomic expressions. Overall, our findings implicate important therapeutic targets for the development of receptor-specific vaccines and drugs for COVID-19

    DataSheet2_WTAP mediates the anti-inflammatory effect of Astragalus mongholicus polysaccharide on THP-1 macrophages.docx

    No full text
    Background:Astragalus mongholicus polysaccharides (APS) have anti-inflammatory, antioxidant and immunomodulatory effects. Recent studies have demonstrated the epigenetic regulation of N6-methyladenosine (m6A) in the development of inflammation. However, the effect of APS on m6A modification is unclear. Here, for the first time, we investigate the mechanism of m6A modification in APS regulation of THP-1 macrophage inflammation.Methods: We treated LPS-induced THP-1 macrophages with APS at different concentrations and times, and detected IL-6 mRNA and protein levels by quantitative real-time PCR (qRT-PCR) and western blot, respectively. The m6A modification level was detected by m6A quantification kit. The proteins that regulate m6A modification were screened by western blot. Wilms’ tumor 1-associating protein (WTAP) was overexpressed in APS-treated THP-1 macrophages and the m6A modification level and IL-6 expressions were detected.Results: These findings confirmed that APS significantly abolished LPS-induced IL-6 levels in THP-1 macrophages. Meanwhile, APS reduced m6A modification levels and WTAP gene expression in THP-1 macrophages. Further overexpression of WTAP can significantly reverse APS-induced m6A modification level and IL-6 expression. Mechanistically, APS regulates IL-6 expression through WTAP-mediated p65 nuclear translocation.Conclusion: Overall, our study suggested that WTAP mediates the anti-inflammatory effect of APS by regulating m6A modification levels in THP-1 macrophages. This study reveals a new dimension of APS regulation of inflammation at the epigenetic level.</p
    corecore