4,308 research outputs found

    Creating a Dataset for High-Performance Computing Code Translation: A Bridge Between HPC Fortran and C++

    Full text link
    In this study, we present a novel dataset for training machine learning models translating between OpenMP Fortran and C++ code. To ensure reliability and applicability, the dataset is initially refined using a meticulous code similarity test. The effectiveness of our dataset is assessed using both quantitative (CodeBLEU) and qualitative (human evaluation) methods. We demonstrate how this dataset can significantly improve the translation capabilities of large-scale language models, with improvements of ×5.1\mathbf{\times 5.1} for models with no prior coding knowledge and ×9.9\mathbf{\times 9.9} for models with some coding familiarity. Our work highlights the potential of this dataset to advance the field of code translation for high-performance computing. The dataset is available at https://github.com/bin123apple/Fortran-CPP-HPC-code-translation-datase

    Epidemiological Trends in Cardiovascular Disease Mortality Attributable to Modifiable Risk Factors and Its Association with Sociodemographic Transitions across BRICS-Plus Countries

    Get PDF
    BRICS-Plus countries (Brazil, Russia, India, China, South Africa, and 30 other countries) is a group of 35 countries with emerging economies making up more than half of the world's population. We explored epidemiological trends of cardiovascular disease (CVD) mortality attributable to modifiable risk factors and its association with period and birth cohort effects and sociodemographic index (SDI) across BRICS-Plus countries by using joinpoint regression and age-period-cohort modeling from 1990 to 2019. Between 1990 and 2019, the all-ages CVD deaths increased by 85.2% (6.1 million to 11.3 million) across BRICS-Plus countries. The CVD age-standardized mortality rate attributable to dietary risks and smoking significantly decreased across BRICS-Plus countries, with some exceptions. However, four-fifths of BRICS-Plus countries observed a remarkable increasing trend of high body mass-index (BMI)-related CVD deaths, in particular, among younger adults (25-49 years). Early birth cohorts and individuals aged greater than 50 years showed a higher risk of CVD mortality. Both the China-ASEAN FTA and Mercosur regions stand out for their successful sociodemographic transition, with a significant reduction in CVD mortality over the study period. Singapore and Brazil achieved great progress in CVD mortality reduction and the other BRICS-Plus countries should follow their lead in adopting public health policies and initiatives into practice

    Activity and Stability of Trypsin Immobilized onto Chitosan Magnetic Nanoparticles

    Get PDF
    The aim of this study was to develop a thermally and operationally stable trypsin through covalent immobilization onto chitosan magnetic nanoparticles (Fe3O4 @CTS). The successful preparation of the Fe3O4 @CTS nanoparticles was verified by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM), which indicated that the prepared Fe3O4 @CTS nanoparticles have superparamagnetic properties, with an average size of approximately 17 nm. Then, trypsin was covalently immobilized onto the Fe3O4 @CTS nanoparticles at a high loading capacity (149.25 mg/g). The FTIR data demonstrated that the trypsin had undergone a conformational change compared with free trypsin, and the Michaelis constant (Km) and the maximum hydrolysis reaction rate (Vmax) showed that the trypsin immobilized on the Fe3O4 @CTS had a lower affinity for BAEE and lower activity compared with free trypsin. However, the immobilized trypsin showed higher activity than free trypsin at pH 6.0 and in alkaline conditions and retained more than 84% of its initial activity at 60°C after 8 h incubation. Its excellent performance across a broader pH range and high thermal stability, as well as its effective hydrolysis of bovine serum albumin (BSA) and its reusability, make it more attractive than free trypsin for application in protein digestion

    A 3D-hydrodynamic model for predicting the environmental fate of chemical pollutants in Xiamen Bay, southeast China.

    Get PDF
    Simulation model is very essential for predicting the environmental fate and the potential environmental consequences of chemical pollutants including those from accidental chemical spills. However very few of such simulation model is seen related to Chinese costal water body. As the first step toward our final goal to develop a simulation model for the prediction and the risk assessment of chemical pollutants in Chinese coastal water, this study developed a three-dimensional (3D) hydrodynamic model of Xiamen Bay (XMB). This hydrodynamic model was externally derived by meteorological data, river discharge and boundary conditions of XMB. We used the model to calculate the physical factors, especially water temperature, salinity and flow field, from June to September 2016 in XMB. The results demonstrated a good match between observations and simulations, which underscores the feasibility of this model in predicting the spatial-temporal concentration of chemical pollutants in the coastal water of XMB. Longitudinal salinity distributions and the mixing profile of river-sea interactions are discussed, including the obvious gradation of salinity from the river towards sea sites shown by the model. We further assumed that 1000 kg and 1000 mg/L of a virtual chemical pollutant leaked out from Jiulong River (JR) estuary (point source) and whole XMB (non-point source), respectively. The model illustrates that it takes three months for XMB to become purified when point source pollution occurs in the estuary, while half a year to be required in the case of non-point source pollution across the entire bay. Moreover, the model indicated that pollutants can easily accumulate in the western coastal zone and narrow waters like Maluan Bay, which can guide environmental protection strategies

    A 3D-hydrodynamic model for predicting the environmental fate of chemical pollutants in Xiamen Bay, southeast China

    Get PDF
    Abstract(#br)Simulation model is very essential for predicting the environmental fate and the potential environmental consequences of chemical pollutants including those from accidental chemical spills. However very few of such simulation model is seen related to Chinese costal water body. As the first step toward our final goal to develop a simulation model for the prediction and the risk assessment of chemical pollutants in Chinese coastal water, this study developed a three-dimensional (3D) hydrodynamic model of Xiamen Bay (XMB). This hydrodynamic model was externally derived by meteorological data, river discharge and boundary conditions of XMB. We used the model to calculate the physical factors, especially water temperature, salinity and flow field, from June to September 2016 in XMB. The results demonstrated a good match between observations and simulations, which underscores the feasibility of this model in predicting the spatial-temporal concentration of chemical pollutants in the coastal water of XMB. Longitudinal salinity distributions and the mixing profile of river-sea interactions are discussed, including the obvious gradation of salinity from the river towards sea sites shown by the model. We further assumed that 1000 kg and 1000 mg/L of a virtual chemical pollutant leaked out from Jiulong River (JR) estuary (point source) and whole XMB (non-point source), respectively. The model illustrates that it takes three months for XMB to become purified when point source pollution occurs in the estuary, while half a year to be required in the case of non-point source pollution across the entire bay. Moreover, the model indicated that pollutants can easily accumulate in the western coastal zone and narrow waters like Maluan Bay, which can guide environmental protection strategies

    Fresh raspberry phytochemical extract inhibits hepatic lesion in a Wistar rat model

    Get PDF
    Background: Red raspberry possesses potent antioxidant capacity and antiproliferative activity against cancer in vitro. Methods: The objective of this study was to determine the protective effects of raspberry 80% acetone extract in a rat hepatic lesions model induced by diethylnitrosamine (DEN). Rats were treated with the red raspberry extract (0.75, 1.5 or 3.0 g/kg of body weight) by gavage starting 2 h after DEN administration and continuing for 20 weeks. Results: A dose-dependent inhibition by red raspberry extract of DEN-induced hepatic nodule formation which stands for hepatic lesions was observed. Corresponding hepatic nodule incidence rates were 45.0, 40.0, 25.0 and 5.0% in positive control, low, middle and high groups, respectively (P < 0.01 or 0.05). Gross findings, histopathological and ultrastructural evaluations of hepatic lesion were performed on 9, 8, 5 and 1 hepatic nodule in positive control, low, middle and high doses of groups, respectively, identified in rats from the respective groups of 20. A decreasing trend of proportions of hepatocellular carcinoma masses accompanied the increasing doses of red raspberry extract. Conclusions: These findings demonstrate that the potent capacity of red raspberry diet could not only suppress DEN-induced hepatic lesions in rats, but also reduce the definite diagnostic features of neoplasm

    Development of Simple Sequence Repeats (SSR) Markers in Setaria italica (Poaceae) and Cross-Amplification in Related Species

    Get PDF
    Foxtail millet is one of the world’s oldest cultivated crops. It has been adopted as a model organism for providing a deeper understanding of plant biology. In this study, 45 simple sequence repeats (SSR) markers of Setaria italica were developed. These markers showing polymorphism were screened in 223 samples from 12 foxtail millet populations around Taiwan. The most common dinucleotide and trinucleotide repeat motifs are AC/TG (84.21%) and CAT (46.15%). The average number of alleles (Na), the average heterozygosities observed (Ho) and expected (He) are 3.73, 0.714, 0.587, respectively. In addition, 24 SSR markers had shown transferability to six related Poaceae species. These new markers provide tools for examining genetic relatedness among foxtail millet populations and other related species. It is suitable for germplasm management and protection in Poaceae

    CaO as a Solid Base Catalyst for Transesterification of Soybean Oil

    Get PDF
    Three different calcium Oxide catalysts were synthesized from different precursors and characterized by Xray diffraction (XRD), scanning electron microscopy (SEM), and ternperature-programmed desorption (TPD). They were used as catalysts in the transesterification of soybean oil (SBO) for the production of fatty acid methyl esters (FAME), namely biodiesel. Calcium oxide front calcite (Cal(N)) showed the highest activity towards the transesterification of SBO. The transesterification activity of CaO was found to be highly related to the basicity of the catalysts. The catalytic activity of CaO greatly decreased when CaO was exposed to CO, (Raman spectroscopic Studies demonstrated that the formation of CaCO3 and Ca(OH)(2) oil the surface of CaO when CaO was exposed to room air prevented CaO from participating in the transesterification of SBO). The degree of poisoning was highly dependent on the type of precursors with Cal(N) more resistant to CO., poisoning than CaO from aragonite (Ara(N)). Deactivated CaO catalysts could he partially regenerated. A mechanism was proposed to explain the poisoning and regenerating processes. Furthermore, whether the solid phase of CaO or dissolved CaO wits the active species in the transesterification of SBO was also investigated
    corecore