3,919 research outputs found

    Arithmetic Properties of Overpartition Pairs

    Full text link
    Bringmann and Lovejoy introduced a rank for overpartition pairs and investigated its role in congruence properties of ppˉ(n)\bar{pp}(n), the number of overpartition pairs of n. In particular, they applied the theory of Klein forms to show that there exist many Ramanujan-type congruences for the number ppˉ(n)\bar{pp}(n). In this paper, we shall derive two Ramanujan-type identities and some explicit congruences for ppˉ(n)\bar{pp}(n). Moreover, we find three ranks as combinatorial interpretations of the fact that ppˉ(n)\bar{pp}(n) is divisible by three for any n. We also construct infinite families of congruences for ppˉ(n)\bar{pp}(n) modulo 3, 5, and 9.Comment: 19 page

    Y(so(5)) symmtry of the nonlinear Schro¨\ddot{o}dinger model with four-cmponents

    Full text link
    The quantum nonlinear Schro¨\ddot{o}dinger(NLS) model with four-component fermions exhibits a Y(so(5))Y(so(5)) symmetry when considered on an infintite interval. The constructed generators of Yangian are proved to satisfy the Drinfel'd formula and furthermore, the RTTRTT relation with the general form of rational R-matrix given by Yang-Baxterization associated with so(5)so(5) algebraic structure.Comment: 10 pages, no figure

    Lattice Matrix Elements and CP Violation in B and K Physics: Status and Outlook

    Full text link
    Status of lattice calculations of hadron matrix elements along with CP violation in B and in K systems is reviewed. Lattice has provided useful input which, in conjunction with experimenatl data, leads to the conclusion that CP-odd phase in the CKM matrix plays the dominant role in the observed asymmetry in B→ψKsB \to \psi K_s. It is now quite likely that any beyond the SM, CP-odd, phase will cause only small deviations in B-physics. Search for the effects of the new phase(s) will consequently require very large data samples as well as very precise theoretical predictions. Clean determination of {\it all} the angles of the unitarity triangle therefore becomes essential. In this regard B→KD0B \to K D^0 processes play a unique role. Regarding K-decays, remarkable progress made by theory with regard to maintenance of chiral symmetry on the lattice is briefly discussed. First application already provide quantitaive information on BKB_K and the ΔI=1/2\Delta I=1/2 rule. The enhancement in ReA0Re A_0 appears to arise solely from tree operators, esp. Q2Q_2; penguin contribution to ReA0Re A_0 appears to be very small. However, improved calculations are necessary for \epsilon^'/epsilon as there the contributions of QCD penguins and electroweak penguins largely seem to cancel. There are good reasons, though, to believe that these cancellations will not survive improvements that are now underway. Importance of determining the unitarity triangle purely from K-decays is also emphasized.Comment: Invited talk at the 9th International Symposium on Particles, Strings and Cosmology (PASCOS 03), Mumbai (Bombay) India,3-8 Jan 200

    How quantum bound states bounce and the structure it reveals

    Get PDF
    We investigate how quantum bound states bounce from a hard surface. Our analysis has applications to ab initio calculations of nuclear structure and elastic deformation, energy levels of excitons in semiconductor quantum dots and wells, and cold atomic few-body systems on optical lattices with sharp boundaries. We develop the general theory of elastic reflection for a composite body from a hard wall. On the numerical side we present ab initio calculations for the compression of alpha particles and universal results for two-body states. On the analytical side we derive a universal effective potential that gives the reflection scattering length for shallow two-body states.Comment: final publication version, new lattice results on alpha particle compression, 5 pages, 2 figure

    Influence of the Fermi Surface Morphology on the Magnetic Field-Driven Vortex Lattice Structure Transitions in YBa2_{2}Cu3_{3}O7−δ:δ=_{7-\delta}:\delta=0, 0.15

    Full text link
    We report small-angle neutron scattering measurements of the vortex lattice (VL) structure in single crystals of the lightly underdoped cuprate superconductor YBa2Cu3O6.85. At 2 K, and for fields of up to 16 T applied parallel to the crystal c-axis, we observe a sequence of field-driven and first-order transitions between different VL structures. By rotating the field away from the c-axis, we observe each structure transition to shift to either higher or lower field dependent on whether the field is rotated towards the [100] or [010] direction. We use this latter observation to argue that the Fermi surface morphology must play a key role in the mechanisms that drive the VL structure transitions. Furthermore, we show this interpretation is compatible with analogous results obtained previously on lightly overdoped YBa2Cu3O7. In that material, it has long-been suggested that the high field VL structure transition is driven by the nodal gap anisotropy. In contrast, the results and discussion presented here bring into question the role, if any, of a nodal gap anisotropy on the VL structure transitions in both YBa2Cu3O6.85 and YBa2Cu3O7

    Hybrid meson decay from the lattice

    Get PDF
    We discuss the allowed decays of a hybrid meson in the heavy quark limit. We deduce that an important decay will be into a heavy quark non-hybrid state and a light quark meson, in other words, the de-excitation of an excited gluonic string by emission of a light quark-antiquark pair. We discuss the study of hadronic decays from the lattice in the heavy quark limit and apply this approach to explore the transitions from a spin-exotic hybrid to χbη\chi_b \eta and χbS\chi_b S where SS is a scalar meson. We obtain a signal for the transition emitting a scalar meson and we discuss the phenomenological implications.Comment: 18 pages, LATEX, 3 ps figure

    Quantum chromodynamics with advanced computing

    Get PDF
    We survey results in lattice quantum chromodynamics from groups in the USQCD Collaboration. The main focus is on physics, but many aspects of the discussion are aimed at an audience of computational physicists.Comment: 17 pp. Featured presentation at Scientific Discovery with Advanced Computing, July 13-17, Seattl

    Standard Model Matrix Elements for Neutral B-Meson Mixing and Associated Decay Constants

    Full text link
    We present results of quenched lattice calculations of the matrix elements relevant for B_d-\bar B_d and B_s-\bar B_s mixing in the Standard Model. Results for the corresponding SU(3)-breaking ratios, which can be used to constrain or determine |V_{td}|, are also given. The calculations are performed at two values of the lattice spacing, corresponding to \beta = 6.0 and \beta = 6.2, with quarks described by a mean-field-improved Sheikholeslami-Wohlert action. As a by-product, we obtain the leptonic decay constants of B and D mesons. We also present matrix elements relevant for D^0-\bar D^0 mixing. Our results are summarized in the Introduction.Comment: 27 pages (RevTeX), 26 figures, version published in Phys. Rev. D: improved estimate of the systematic error associated with the uncertainty on the strange quark mass and other small improvements to analysis (results change only slightly); correction of typos and minor changes to text; RevTeX formattin
    • …
    corecore