8,630 research outputs found

    NEPTUN‐A spectrometer for measuring the Spin Analyzing Power in p‐p elastic scattering at large P2⟂ at 400 GeV (and 3 TeV) at UNK

    Full text link
    We are constructing the NEPTUN‐A spectrometer for measuring the Spin Analyzing Power in p+p↑→p+p at P2⟂=2 to 10 (GeV/c)2 at 400 GeV (or at 3 TeV) when the UNK accelerator in Protvino, Russia, becomes operational. The spectrometer consists of a 55 m long recoil arm with 3 horizontally bending magnets to guide the recoil protons onto a fixed 37° line. Then two vertical dipole magnets bend the protons up by 12° for momentum analysis. The momentum will be measured to an accuracy of 0.1% using chambers. In order to accept a large solid angle, the spectrometer contains a strong‐focusing pair of quadrupoles looking at the polarized proton jet target. The forward arm consists of scintillator hodoscopes for measurement of the forward vertical angle. Acceptances and event rates are calculated. The status of the spectrometer is reported. © 1995 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87476/2/399_1.pd

    Polarization in p−p elastic scattering at high energies

    Full text link
    Some recent data on polarization in p−p elastic scattering are briefly surveyed and their characteristics reviewed. A new 28 GeV/c measurement of A, the analyzing power is presented. A few interesting theories are also briefly discussed. We plan more measurements of A soon and plan to measuree ANN when the polarized beam comes on at the A.G.S.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87402/2/108_1.pd

    Controlled enhancement or suppression of exchange biasing using impurity ÎŽ\delta-layers

    Full text link
    The effects of inserting impurity ÎŽ\delta-layers of various elements into a Co/IrMn exchange biased bilayer, at both the interface, and at given points within the IrMn layer a distance from the interface, has been investigated. Depending on the chemical species of dopant, and its position, we found that the exchange biasing can be either strongly enhanced or suppressed. We show that biasing is enhanced with a dusting of certain magnetic impurities, present at either at the interface or sufficiently far away from the Co/IrMn interface. This illustrates that the final spin structure at the Co/IrMn interface is not only governed by interface structure/roughness but is also mediated by local exchange or anisotropy variations within the bulk of the IrMn

    Propagation of Light in Photonic Crystal Fibre Devices

    Full text link
    We describe a semi-analytical approach for three-dimensional analysis of photonic crystal fibre devices. The approach relies on modal transmission-line theory. We offer two examples illustrating the utilization of this approach in photonic crystal fibres: the verification of the coupling action in a photonic crystal fibre coupler and the modal reflectivity in a photonic crystal fibre distributed Bragg reflector.Comment: 15 pages including 7 figures. Accepted for J. Opt. A: Pure Appl. Op

    First results from 2+1-Flavor Domain Wall QCD: Mass Spectrum, Topology Change and Chiral Symmetry with Ls=8L_s=8

    Get PDF
    We present results for the static interquark potential, light meson and baryon masses, and light pseudoscalar meson decay constants obtained from simulations of domain wall QCD with one dynamical flavour approximating the ss quark, and two degenerate dynamical flavours with input bare masses ranging from msm_s to ms/4m_s/4 approximating the uu and dd quarks. We compare these quantities obtained using the Iwasaki and DBW2 improved gauge actions, and actions with larger rectangle coefficients, on 163×3216^3\times32 lattices. We seek parameter values at which both the chiral symmetry breaking residual mass due to the finite lattice extent in the fifth dimension and the Monte Carlo time history for topological charge are acceptable for this set of quark masses at lattice spacings above 0.1 fm. We find that the Iwasaki gauge action is best, demonstrating the feasibility of using QCDOC to generate ensembles which are good representations of the QCD path integral on lattices of up to 3 fm in spatial extent with lattice spacings in the range 0.09-0.13 fm. Despite large residual masses and a limited number of sea quark mass values with which to perform chiral extrapolations, our results for light hadronic physics scale and agree with experimental measurements within our statistical uncertainties.Comment: RBC and UKQCD Collaborations. 82 pages, 34 figures Typos correcte

    Standard Model Matrix Elements for Neutral B-Meson Mixing and Associated Decay Constants

    Full text link
    We present results of quenched lattice calculations of the matrix elements relevant for B_d-\bar B_d and B_s-\bar B_s mixing in the Standard Model. Results for the corresponding SU(3)-breaking ratios, which can be used to constrain or determine |V_{td}|, are also given. The calculations are performed at two values of the lattice spacing, corresponding to \beta = 6.0 and \beta = 6.2, with quarks described by a mean-field-improved Sheikholeslami-Wohlert action. As a by-product, we obtain the leptonic decay constants of B and D mesons. We also present matrix elements relevant for D^0-\bar D^0 mixing. Our results are summarized in the Introduction.Comment: 27 pages (RevTeX), 26 figures, version published in Phys. Rev. D: improved estimate of the systematic error associated with the uncertainty on the strange quark mass and other small improvements to analysis (results change only slightly); correction of typos and minor changes to text; RevTeX formattin

    Lattice Matrix Elements and CP Violation in B and K Physics: Status and Outlook

    Full text link
    Status of lattice calculations of hadron matrix elements along with CP violation in B and in K systems is reviewed. Lattice has provided useful input which, in conjunction with experimenatl data, leads to the conclusion that CP-odd phase in the CKM matrix plays the dominant role in the observed asymmetry in B→ψKsB \to \psi K_s. It is now quite likely that any beyond the SM, CP-odd, phase will cause only small deviations in B-physics. Search for the effects of the new phase(s) will consequently require very large data samples as well as very precise theoretical predictions. Clean determination of {\it all} the angles of the unitarity triangle therefore becomes essential. In this regard B→KD0B \to K D^0 processes play a unique role. Regarding K-decays, remarkable progress made by theory with regard to maintenance of chiral symmetry on the lattice is briefly discussed. First application already provide quantitaive information on BKB_K and the ΔI=1/2\Delta I=1/2 rule. The enhancement in ReA0Re A_0 appears to arise solely from tree operators, esp. Q2Q_2; penguin contribution to ReA0Re A_0 appears to be very small. However, improved calculations are necessary for \epsilon^'/epsilon as there the contributions of QCD penguins and electroweak penguins largely seem to cancel. There are good reasons, though, to believe that these cancellations will not survive improvements that are now underway. Importance of determining the unitarity triangle purely from K-decays is also emphasized.Comment: Invited talk at the 9th International Symposium on Particles, Strings and Cosmology (PASCOS 03), Mumbai (Bombay) India,3-8 Jan 200

    Multiple abiotic and biotic pathways shape biomass demographic processes in temperate forests

    Get PDF
    International audienceForests play a key role in regulating the global carbon cycle, and yet the abiotic and biotic conditions that drive the demographic processes that underpin forest carbon dynamics remain poorly understood in natural ecosystems. To address this knowledge gap, we used repeat forest inventory data from 92,285 trees across four large permanent plots (4-25 ha in size) in temperate mixed forests in northeast China to ask the following questions: (1) How do soil conditions and stand age drive biomass demographic processes? (2) How do vegetation quality (i.e., functional trait diversity and composition) and quantity (i.e., initial biomass stocks) influence biomass demographic processes independently from soil conditions and stand age? (3) What is the relative contribution of growth, recruitment, and mortality to net biomass change? Using structural equation modeling, we showed that all three demographic processes were jointly constrained by multiple abiotic and biotic factors and that mortality was the strongest determinant on net biomass change over time. Growth and mortality, as well as functional trait diversity and the community-weighted mean of specific leaf area (CWM SLA), declined with stand age. By contrast, high soil phosphorous concentrations were associated with greater functional diversity and faster dynamics (i.e., high growth and mortality rates), but associated with lower CWM SLA and initial biomass stock. More functionally diverse communities also had higher recruitment rates, but did not exhibit faster growth and mortality. Instead, initial biomass stocks and CWM SLA were stronger predictors of biomass growth and mortality, respectively. By integrating the full spectrum of abiotic and biotic drivers of forest biomass dynamics, our study provides critical system-level insights needed to predict the possible consequences of regional changes in forest diversity, composition, structure and function in the context of global change

    Multivalued SK-contractions with respect to b-generalized pseudodistances

    Get PDF
    A new class of multivalued non-self-mappings, called SK-contractions with respect to b-generalized pseudodistances, is introduced and used to investigate the existence of best proximity points by using an appropriate geometric property. Some new fixed point results in b-metric spaces are also obtained. Examples are given to support the usability of our main result
    • 

    corecore