1,128 research outputs found

    THE EFFECT OF ANKLE PLATFORM TRAINING ON ANKLE PROPRIOCEPTION IN SUBJECTS WITH UNILATERAL FUNCTIONAL ANKLE INSTABILITY

    Get PDF
    INTRODUCTION: Functional ankle instability (FAI) is defined as the subjective sensation of giving way or feeling joint instability after repeated episodes of ankle sprain (Riemann et al., 2003). The purpose of this study was to examine the effect of 12-week Biomechanical Ankle Platform System (BAPS) training on ankle reposition sense in subjects with unilateral FAI

    EFFECTS OF EIGHT-WEEK WHOLE-BODY VIBRATION TRAINING ON POSTURAL STABILITY IN ELDERLY ADULTS

    Get PDF
    The aim of this study was to examine the effects of an eight-week whole-body vibration training (WBVT) on postural stability (PS) in elderly people. Twenty-two elderly people with normal ability of movement were randomized into the WBVT group (WBVTG, 13 elders), and the control group (CG, 9 elders). The WBVTG underwent WBV training for 8 weeks. The CG did not take any physical training. The PS performance was evaluated by the Biodex Balance System to measure the overall (O), anterior-posterior (AP), and medial-lateral (ML) stability at level 2 (unstable) and level 8 (stable). One-way ANCOVA were used for statistical analysis, with =0.05. Results showed that after training, the WBVG significantly improved the O, AP, and ML stability performance at level 2, and also the O and ML stability performance at level 8

    THE EFFECT OF ANKLE PLATFORM TRAINING ON ANKLE PROPRIOCEPTION IN SUBJECTS WITH UNILATERAL FUNCTIONAL ANKLE INSTABILITY

    Get PDF
    INTRODUCTION: Functional ankle instability (FAI) is defined as the subjective sensation of giving way or feeling joint instability after repeated episodes of ankle sprain (Riemann et al., 2003). The purpose of this study was to examine the effect of 12-week Biomechanical Ankle Platform System (BAPS) training on ankle reposition sense in subjects with unilateral FAI

    A silicon-organic hybrid platform for quantum microwave-to-optical transduction

    Get PDF
    Low-loss fiber optic links have the potential to connect superconducting quantum processors together over long distances to form large scale quantum networks. A key component of these future networks is a quantum transducer that coherently and bidirectionally converts photons from microwave frequencies to optical frequencies. We present a platform for electro-optic photon conversion based on silicon-organic hybrid photonics. Our device combines high quality factor microwave and optical resonators with an electro-optic polymer cladding to perform microwave-to-optical photon conversion from 6.7 GHz to 193 THz (1558 nm). The device achieves an electro-optic coupling rate of 590 Hz in a millikelvin dilution refrigerator environment. We use an optical heterodyne measurement technique to demonstrate the single-sideband nature of the conversion with a selectivity of approximately 10 dB. We analyze the effects of stray light in our device and suggest ways in which this can be mitigated. Finally, we present initial results on high-impedance spiral resonators designed to increase the electro-optic coupling

    Nested Invariance Pooling and RBM Hashing for Image Instance Retrieval

    Get PDF
    The goal of this work is the computation of very compact binary hashes for image instance retrieval. Our approach has two novel contributions. The first one is Nested Invariance Pooling (NIP), a method inspired from i-theory, a mathematical theory for computing group invariant transformations with feed-forward neural networks. NIP is able to produce compact and well-performing descriptors with visual representations extracted from convolutional neural networks. We specifically incorporate scale, translation and rotation invariances but the scheme can be extended to any arbitrary sets of transformations. We also show that using moments of increasing order throughout nesting is important. The NIP descriptors are then hashed to the target code size (32-256 bits) with a Restricted Boltzmann Machine with a novel batch-level reg-ularization scheme specifically designed for the purpose of hashing (RBMH). A thorough empirical evaluation with state-of-the-art shows that the results obtained both with the NIP descriptors and the NIP+RBMH hashes are consistently outstanding across a wide range of datasets

    Satellite-derived Constraints on the Effect of Drought Stress on Biogenic Isoprene Emissions in the Southeast US

    Get PDF
    While substantial progress has been made to improve our understanding of biogenic isoprene emissions under unstressed conditions, there remain large uncertainties in isoprene emissions under stressed conditions. Here we use the US Drought Monitor (USDM) as a weekly drought severity index and tropospheric columns of formaldehyde (HCHO), the key product of isoprene oxidation, retrieved from the Ozone Monitoring Instrument (OMI) to derive top-down constraints on the response of summertime isoprene emissions to drought stress in the Southeast U.S. (SE US), a region of high isoprene emissions and prone to drought. OMI HCHO column density is found to be 5.3 % (mild drought) &ndash; 19.8 % (severe drought) higher than that in no-drought conditions. A global chemical transport model, GEOS-Chem, with the MEGAN2.1 emission algorithm can simulate this direction of change, but the simulated increases at the corresponding drought levels are 1.4&ndash;2.0 times of OMI HCHO, suggesting the need for a drought-stress algorithm in the model. By minimizing the model-to-OMI differences in HCHO to temperature sensitivity under different drought levels, we derived a top-down drought stress factor (&gamma;d_OMI) in GEOS-Chem that parameterizes using water stress and temperature. The algorithm led to an 8.6 % (mild drought) &ndash; 20.7 % (severe drought) reduction in isoprene emissions in the SE US relative to the simulation without it. With &gamma;d_OMI the model predicts a non-uniform trend of increase in isoprene emissions with drought severity that is consistent with OMI HCHO and a single site&rsquo;s isoprene flux measurements. Compared with a previous drought stress algorithm derived from the latter, the satellite-based drought stress factor performs better in capturing the regional scale drought-isoprene responses as indicated by the close-to-zero mean bias between OMI and simulated HCHO columns under different drought conditions. The drought stress algorithm also reduces the model&rsquo;s high bias in organic aerosols (OA) simulations by 6.60 % (mild drought) to 11.71 % (severe drought) over the SE US compared to the no-stress simulation. The simulated ozone response to the drought stress factor displays a spatial disparity due to the isoprene suppressing effect on oxidants, with an &lt;1 ppb increase in O3 in high-isoprene regions and a 1&ndash;3 ppbv decrease in O3 in low-isoprene regions. This study demonstrates the unique value of exploiting long-term satellite observations to develop empirical stress algorithms on biogenic emissions where in situ flux measurements are limited.</p

    Osseointegration of a 3D Printed Stemmed Titanium Dental Implant: A Pilot Study

    Get PDF
    In this pilot study, a 3D printed Grade V titanium dental implant with a novel dual-stemmed design was investigated for its biocompatibility in vivo. Both dual-stemmed (n = 12) and conventional stainless steel conical (n = 4) implants were inserted into the tibial metaphysis of New Zealand white rabbits for 3 and 12 weeks and then retrieved with the surrounding bone, fixed, dehydrated, and embedded into epoxy resin. The implants were analyzed using correlative histology, microcomputed tomography, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The histological presence of multinucleated osteoclasts and cuboidal osteoblasts revealed active bone remodeling in the stemmed implant starting at 3 weeks and by 12 weeks in the conventional implant. Bone-implant contact values indicated that the stemmed implants supported bone growth along the implant from the coronal crest at both 3- and 12-week time periods and showed bone growth into microporosities of the 3D printed surface after 12 weeks. In some cases, new bone formation was noted in between the stems of the device. Conventional implants showed mechanical interlocking but did have indications of stress cracking and bone debris. This study demonstrates the comparable biocompatibility of these 3D printed stemmed implants in rabbits up to 12 weeks
    corecore