138,596 research outputs found
An experimental study of a self-confined flow with ring-vorticity distribution
A new form of self-confined flow was investigated in which a recirculation zone forms away from any solid boundary. An inviscid flow analysis indicated that in a purely meridional axisymmetric flow a stationary, spherical, self-confined region should occur in the center of a streamlined divergent-convergent enlargement zone. The spherical confinement region would be at rest and at constant pressure. Experimental investigations were carried out in a specially built test apparatus to establish the desired confined flow. The streamlined divergent-convergent interior shape of the test section was fabricated according to the theoretical calculation for a particular streamline. The required inlet vorticity distribution was generated by producing a velocity profile with a shaped gauze screen in the straight pipe upstream of the test section. Fluid speed and turbulence intensity were measured with a constant-temperature hot-wire anemometer system. The measured results indicated a very orderly and stable flow field
Towards Long-endurance Flight: Design and Implementation of a Variable-pitch Gasoline-engine Quadrotor
Majority of today's fixed-pitch, electric-power quadrotors have short flight
endurance ( 1 hour) which greatly limits their applications. This paper
presents a design methodology for the construction of a long-endurance
quadrotor using variable-pitch rotors and a gasoline-engine. The methodology
consists of three aspects. Firstly, the rotor blades and gasoline engine are
selected as a pair, so that sufficient lift can be comfortably provided by the
engine. Secondly, drivetrain and airframe are designed. Major challenges
include airframe vibration minimization and power transmission from one engine
to four rotors while keeping alternate rotors contra-rotating. Lastly, a PD
controller is tuned to facilitate preliminary flight tests. The methodology has
been verified by the construction and successful flight of our gasoline
quadrotor prototype, which is designed to have a flight time of 2 to 3 hours
and a maximum take-off weight of 10 kg.Comment: 6 page
Long-range coupling of prefrontal cortex and visual (MT) or polysensory (STP) cortical areas in motion perception
To investigate how, where and when moving
auditory cues interact with the perception of object-motion
during self-motion, we conducted psychophysical, MEG, and
fMRI experiments in which the subjects viewed nine textured
objects during simulated forward self-motion. On each trial,
one object was randomly assigned its own looming motion
within the scene. Subjects reported which of four labeled objects
had independent motion within the scene in two conditions:
(1) visual information only and (2) with additional moving-
auditory cue.
In MEG, comparison of the two conditions showed: (i) MT
activity is similar across conditions, (ii) late after the stimulus
presentation there is additional activity in the auditory cue
condition ventral to MT, (iii) with the auditory cue, the right
auditory cortex (AC) shows early activity together with STS,
(iv) these two activities have different time courses and the
STS signals occur later in the epoch together with frontal
activity in the right hemisphere, (v) for the visual-only condition
activity in PPC (posterior parietal cortex) is stronger than
in the auditory-cue condition. fMRI conducted for visual-only
condition reveals activations in a network of parietal and frontal
areas and in MT.
In addition, Dynamic Granger Causality analysis showed
for auditory cues a strong connection of the AC with STP but
not with MT suggesting binding of visual and auditory information
at STP. Also, while in the visual-only condition PFC is
connected with MT, in the auditory-cue condition PFC is connected
to STP (superior temporal polysensory) area.
These results indicate that PFC allocates attention to the
“object” as a whole, in STP to a moving visual-auditory object,
and in MT to a moving visual object.Accepted manuscrip
Optical selection rules of graphene nanoribbons
Optical selection rules for one-dimensional graphene nanoribbons are
analytically studied and clarified based on the tight-binding model. A
theoretical explanation, through analyzing the velocity matrix elements and the
features of wavefunctions, can account for the selection rules, which depend on
the edge structure of nanoribbon, namely armchair or zigzag edges. The
selection rule of armchair nanoribbons is \Delta J=0, and the optical
transitions occur from the conduction to valence subbands of the same index.
Such a selection rule originates in the relationships between two sublattices
and between conduction and valence subbands. On the other hand, zigzag
nanoribbons exhibit the selection rule |\Delta J|=odd, which results from the
alternatively changing symmetry property as the subband index increases. An
efficiently theoretical prediction on transition energies is obtained with the
application of selection rules. Furthermore, the energies of band edge states
become experimentally attainable via optical measurements
Well-posedness of the Ericksen-Leslie system
In this paper, we prove the local well-posedness of the Ericksen-Leslie
system, and the global well-posednss for small initial data under the physical
constrain condition on the Leslie coefficients, which ensures that the energy
of the system is dissipated. Instead of the Ginzburg-Landau approximation, we
construct an approximate system with the dissipated energy based on a new
formulation of the system.Comment: 16 page
- …
