1,757 research outputs found

    Micro/Nano-Structuring of Medical Stainless Steel using Femtosecond Laser Pulses

    Get PDF
    AbstractThe medical stainless steel (SUS 304) surface is irradiated by femtosecond laser pulses with linear or circular polarization to form nanostructure-covered conical microstructures. The mean spacing of the conical microstructures and the type of the nanostructure can be controlled by the laser-processing parameters. The liquid test (water and normal-saline solution) demonstrates that the process provides a fast single-step structuring method to generate hydrophobic-enhanced metal parts. The biocompatibility test demonstrated that the femtosecond laser micro/nano- structuring surfaces have excellent biocompatibility properties compared to an untreated surface

    Genetic based discrete particle swarm optimization for elderly day care center timetabling

    Get PDF
    The timetabling problem of local Elderly Day Care Centers (EDCCs) is formulated into a weighted maximum constraint satisfaction problem (Max-CSP) in this study. The EDCC timetabling problem is a multi-dimensional assignment problem, where users (elderly) are required to perform activities that require different venues and timeslots, depending on operational constraints. These constraints are categorized into two: hard constraints, which must be fulfilled strictly, and soft constraints, which may be violated but with a penalty. Numerous methods have been successfully applied to the weighted Max-CSP; these methods include exact algorithms based on branch and bound techniques, and approximation methods based on repair heuristics, such as the min-conflict heuristic. This study aims to explore the potential of evolutionary algorithms by proposing a genetic-based discrete particle swarm optimization (GDPSO) to solve the EDCC timetabling problem. The proposed method is compared with the min-conflict random-walk algorithm (MCRW), Tabu search (TS), standard particle swarm optimization (SPSO), and a guided genetic algorithm (GGA). Computational evidence shows that GDPSO significantly outperforms the other algorithms in terms of solution quality and efficiency

    Neoclassical tearing modes in DIII-D and calculations of the stabilizing effects of localized electron cyclotron current drive

    Full text link
    Neoclassical tearing modes are found to limit the achievable beta in many high performance discharges in DIII-D. Electron cyclotron current drive within the magnetic islands formed as the tearing mode grows has been proposed as a means of stabilizing these modes or reducing their amplitude, thereby increasing the beta limit by a factor around 1.5. Some experimental success has been obtained previously on Asdex-U. Here the authors examine the parameter range in DIII-C in which this effect can best be studied

    J/psi couplings to charmed resonances and to pi

    Full text link
    We present an evaluation of the strong couplings JD^(*)D^(*) and JD^(*)D^(*)pi by an effective field theory of quarks and mesons. These couplings are necessary to calculate pi+J/psi --> D^(*)+barD^(*) cross sections, an important background to the J/psi suppression signal in the quark-gluon plasma. We write down the general effective lagrangian and compute the relevant couplings in the soft pion limit and beyond.Comment: 11 pages, 4 figures, 2 reference added and minor comments, style changed to RevTe

    Progress in the determination of the J/ψπJ/\psi-\pi cross section

    Full text link
    Improving previous calculations, we compute the J/ψπcharmedmesonsJ/\psi \pi\to {charmed mesons} cross section using QCD sum rules. Our sum rules for the J/ψπDˉDJ/\psi \pi\to \bar{D} D^*, DDˉD \bar{D}^*, DˉD{\bar D}^* D^* and DˉD{\bar D} D hadronic matrix elements are constructed by using vaccum-pion correlation functions, and we work up to twist-4 in the soft-pion limit. Our results suggest that, using meson exchange models is perfectly acceptable, provided that they include form factors and that they respect chiral symmetry. After doing a thermal average we get 0.3\sim 0.3 mb at T=150\MeV.Comment: 22 pages, RevTeX4 including 7 figures in ps file

    Grainyhead-like 2 (GRHL2) knockout abolishes oral cancer development through reciprocal regulation of the MAP kinase and TGF-β signaling pathways

    Get PDF
    Grainyhead-Like 2 (GRHL2) is an epithelial-specific transcription factor that regulates epithelial morphogenesis and differentiation. Prior studies suggested inverse regulation between GRHL2 and TGF-β in epithelial plasticity and potential carcinogenesis. Here, we report the role of GRHL2 in oral carcinogenesis in vivo using a novel Grhl2 knockout (KO) mouse model and the underlying mechanism involving its functional interaction with TGF-β signaling. We developed epithelial-specific Grhl2 conditional KO mice by crossing Grhl2 floxed mice with those expressing CreER driven by the K14 promoter. After induction of Grhl2 KO, we confirmed the loss of GRHL2 and its target proteins, while Grhl2 KO strongly induced TGF-β signaling molecules. When exposed to 4-nitroquinoline 1-oxide (4-NQO), a strong chemical carcinogen, Grhl2 wild-type (WT) mice developed rampant oral tongue tumors, while Grhl2 KO mice completely abolished tumor development. In cultured oral squamous cell carcinoma (OSCC) cell lines, TGF-β signaling was notably induced by GRHL2 knockdown while being suppressed by GRHL2 overexpression. GRHL2 knockdown or KO in vitro and in vivo, respectively, led to loss of active p-Erk1/2 and p-JNK MAP kinase levels; moreover, ectopic overexpression of GRHL2 strongly induced the MAP kinase activation. Furthermore, the suppressive effect of GRHL2 on TGF-β signaling was diminished in cells exposed to Erk and JNK inhibitors. These data indicate that GRHL2 activates the Erk and JNK MAP kinases, which in turn suppresses the TGF -β signaling. This novel signaling represents an alternative pathway by which GRHL2 regulates carcinogenesis, and is distinct from the direct transcriptional regulation by GRHL2 binding at its target gene promoters, e.g., E-cadherin, hTERT, p63, and miR-200 family genes. Taken together, the current study provides the first genetic evidence to support the role of GRHL2 in carcinogenesis and the underlying novel mechanism that involves the functional interaction between GRHL2 and TGF-β signaling through the MAPK pathways

    Open charm and charmonium production at relativistic energies

    Full text link
    We calculate open charm and charmonium production in Au+AuAu+Au reactions at s\sqrt{s} = 200 GeV within the hadron-string dynamics (HSD) transport approach employing open charm cross sections from pNpN and πN\pi N reactions that are fitted to results from PYTHIA and scaled in magnitude to the available experimental data. Charmonium dissociation with nucleons and formed mesons to open charm (D+DˉD+\bar{D} pairs) is included dynamically. The 'comover' dissociation cross sections are described by a simple phase-space model including a single free parameter, i.e. an interaction strength M02M_0^2, that is fitted to the J/ΨJ/\Psi suppression data for Pb+PbPb+Pb collisions at SPS energies. As a novel feature we implement the backward channels for charmonium reproduction by DDˉD \bar{D} channels employing detailed balance. From our dynamical calculations we find that the charmonium recreation is comparable to the dissociation by 'comoving' mesons. This leads to the final result that the total J/ΨJ/\Psi suppression at s\sqrt{s} = 200 GeV as a function of centrality is slightly less than the suppression seen at SPS energies by the NA50 Collaboration, where the 'comover' dissociation is substantial and the backward channels play no role. Furthermore, even in case that all directly produced J/ΨJ/\Psi mesons dissociate immediately (or are not formed as a mesonic state), a sizeable amount of charmonia is found asymptotically due to the D+DˉJ/ΨD+\bar{D} \to J/\Psi + meson channels in central collisions of Au+AuAu+Au at s\sqrt{s} = 200 GeV which, however, is lower than the J/ΨJ/\Psi yield expected from binary scaling of pppp collisions.Comment: 42 pages, including 14 eps figures, discussions extended and references added, to be published in Phys. Rev.

    Ginkgo biloba extract attenuates oxLDL-induced oxidative functional damages in endothelial cells

    Get PDF
    Ou HC, Lee WJ, Lee IT, Chiu TH, Tsai KL, Lin CY, Sheu WH. Ginkgo biloba extract attenuates oxLDL-induced oxidative functional damages in endothelial cells. J Appl Physiol 106: 1674-1685, 2009. First published February 19, 2009; doi:10.1152/japplphysiol.91415.2008.-Atherosclerosis is a chronic inflammatory process with increased oxidative stress in vascular endothelium. Ginkgo biloba extract (GbE), extracted from Ginkgo biloba leaves, has commonly been used as a therapeutic agent for cardiovascular and neurological disorders. The aim of this study was to investigate how GbE protects vascular endothelial cells against the proatherosclerotic stressor oxidized low-density lipoprotein (oxLDL) in vitro. Human umbilical vein endothelial cells (HUVECs) were incubated with GbE (12.5-100 mu g/ml) for 2 h and then incubated with oxLDL (150 mu g/ml) for an additional 24 h. Subsequently, reactive oxygen species (ROS) generation, antioxidant enzyme activities, adhesion to monocytes, cell morphology, viability, and several apoptotic indexes were assessed. Our data show that ROS generation is an upstream signal in oxLDL-treated HUVECs. Cu,Zn-SOD, but not Mn-SOD, was inactivated by oxLDL. In addition, oxLDL diminished expression of endothelial NO synthase and enhanced expression of adhesion molecules (ICAM, VCAM, and E-selectin) and the adherence of monocytic THP-1 cells to HUVECs. Furthermore, oxLDL increased intracellular calcium, disturbed the balance of Bcl-2 family proteins, destabilized mitochondrial membrane potential, and triggered subsequent cytochrome c release into the cytosol and activation of caspase-3. These detrimental effects were ameliorated dose dependently by GbE (P < 0.05). Results from this study may provide insight into a possible molecular mechanism underlying GbE suppression of the oxLDL-mediated vascular endothelial dysfunction

    Solar Intranetwork Magnetic Elements: bipolar flux appearance

    Full text link
    The current study aims to quantify characteristic features of bipolar flux appearance of solar intranetwork (IN) magnetic elements. To attack such a problem, we use the Narrow-band Filter Imager (NFI) magnetograms from the Solar Optical Telescope (SOT) on board \emph{Hinode}; these data are from quiet and an enhanced network areas. Cluster emergence of mixed polarities and IN ephemeral regions (ERs) are the most conspicuous forms of bipolar flux appearance within the network. Each of the clusters is characterized by a few well-developed ERs that are partially or fully co-aligned in magnetic axis orientation. On average, the sampled IN ERs have total maximum unsigned flux of several 10^{17} Mx, separation of 3-4 arcsec, and a lifetime of 10-15 minutes. The smallest IN ERs have a maximum unsigned flux of several 10^{16} Mx, separations less than 1 arcsec, and lifetimes as short as 5 minutes. Most IN ERs exhibit a rotation of their magnetic axis of more than 10 degrees during flux emergence. Peculiar flux appearance, e.g., bipole shrinkage followed by growth or the reverse, is not unusual. A few examples show repeated shrinkage-growth or growth-shrinkage, like magnetic floats in the dynamic photosphere. The observed bipolar behavior seems to carry rich information on magneto-convection in the sub-photospheric layer.Comment: 26 pages, 14 figure

    Effects of C-Terminal Truncation on Autocatalytic Processing of Bacillus licheniformis gamma-Glutamyl Transpeptidase

    Get PDF
    The role of the C-terminal region of Bacillus licheniformis gamma-glutamyl transpeptidase (BlGGT) was investigated by deletion analysis. Seven C-terminally truncated BlGGTs lacking 581-585, 577-585, 576-585, 566-585, 558-585, 523-585, and 479-585 amino acids, respectively, were generated by site-directed mutagenesis. Deletion of the last nine amino acids had no appreciable effect on the autocatalytic processing of the enzyme, and the engineered protein was active towards the synthetic substrate L-gamma-glutamyl-p-nitroanilide. However, a further deletion to Val576 impaired the autocatalytic processing. In vitro maturation experiments showed that the truncated BlGGT precursors, pro-Delta (576-585), pro-Delta (566-585), and pro-Delta(558-585), could partially precede a time-dependent autocatalytic process to generate the L- and S-subunits, and these proteins showed a dramatic decrease in catalytic activity with respect to the wild-type enzyme. The parental enzyme (BlGGT-4aa) and BlGGT were unfolded biphasically by guanidine hydrochloride (GdnCl), but Delta(577-585), Delta(576-585), Delta(566-585), Delta(558-585), Delta(523-585), and Delta(479-585) followed a monophasic unfolding process and showed a sequential reduction in the GdnCl concentration corresponding to half effect and. Delta G(0) for the unfolding. BlGGT-4aa and BlGGT sedimented at similar to 4.85 S and had a heterodimeric structure of approximately 65.23 kDa in solution, and this structure was conserved in all of the truncated proteins. The frictional ratio (f/f(o)) of BlGGT-4aa, BlGGT, Delta(581-585), and Delta(577-585) was 1.58, 1.57, 1.46, and 1.39, respectively, whereas the remaining enzymes existed exclusively as precursor form with a ratio of less than 1.18. Taken together, these results provide direct evidence for the functional role of the C-terminal region in the autocatalytic processing of BlGGT
    corecore