1,486 research outputs found
GROUND REACTION FORCE OF BASEBALL FLAT GROUND PITCHING
The purpose of this study was to describe the characteristics of the ground reaction force (GRF) of baseball flat ground pitching, and compares the characters with previous research which pitched on pitching mound. Fourteen division I college pitchers participated in this study. A VICON Motion capture system (10 cameras) and two force platforms were used to collect 3-D kinematic data (500Hz) and GRF data (1000Hz). Three successful trials for each subject were analyzed. The result shows the pivot foot anterior/posterior (AP) propulsive force was larger on flat ground, and the leading foot AP force was larger on pitching mound. The other two components GRF were similar in these two ground situations. The three components of GRF had low correlation with ball velocities. Comparing the peak GRF in three components between pitcher with fast and slow ball velocity groups, the fast velocity group produced a larger leading AP braking force. The leading foot AP breaking force may be an important variable for identify the fast and slow pitching ball velocities
Intelligent tracking control of a DC motor driver using self-organizing TSK type fuzzy neural networks
[[abstract]]In this paper, a self-organizing Takagi–Sugeno–Kang (TSK) type fuzzy neural network (STFNN) is proposed. The self-organizing approach demonstrates the property of automatically generating and pruning the fuzzy rules of STFNN without the preliminary knowledge. The learning algorithms not only extract the fuzzy rule of STFNN but also adjust the parameters of STFNN. Then, an adaptive self-organizing TSK-type fuzzy network controller (ASTFNC) system which is composed of a neural controller and a robust compensator is proposed. The neural controller uses an STFNN to approximate an ideal controller, and the robust compensator is designed to eliminate the approximation error in the Lyapunov stability sense without occurring chattering phenomena. Moreover, a proportional-integral (PI) type parameter tuning mechanism is derived to speed up the convergence rates of the tracking error. Finally, the proposed ASTFNC system is applied to a DC motor driver on a field-programmable gate array chip for low-cost and high-performance industrial applications. The experimental results verify the system stabilization and favorable tracking performance, and no chattering phenomena can be achieved by the proposed ASTFNC scheme.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子
Assessing impacts of typhoons and the Chi-Chi earthquake on Chenyulan watershed landscape pattern in Central Taiwan using landscape metrics
The Chi-Chi earthquake (M-L = 7.3) occurred in the central part of Taiwan on September 21, 1999. After the earthquake, typhoons Xangsane and Toraji produced heavy rainfall that fell across the eastern and central parts of Taiwan on November 2000 and July 2001. This study uses remote sensing data, landscape metrics, multivariate statistical analysis, and spatial autocorrelation to assess how earthquake and typhoons affect landscape patterns. It addresses variations of the Chenyulan watershed in Nantou County, near the earthquake's epicenter and crossed by Typhoon Toraji. The subsequent disturbances have gradually changed landscape of the Chenyulan watershed. Disturbances of various types, sizes, and intensities, following various tracks, have various effects on the landscape patterns and variations of the Chenyulan watershed. The landscape metrics that are obtained by multivariate statistical analyses showed that the disturbances produced variously fragmented patches, interspersed with other patches and isolated from patches of the same type across the entire Chenyulan watershed. The disturbances also affected the isolation, size, and shape-complexity of patches at the landscape and class levels. The disturbances at the class level more strongly affected spatial variations in the landscape as well as patterns of grasslands and bare land, than variations in the watershed farmland and forest. Moreover, the earthquake with high magnitude was a starter to create these landscape variations in space in the Chenyulan watershed. The cumulative impacts of the disturbances on the watershed landscape pattern had existed, especially landslides and grassland in the study area, but were not always evident in space and time in landscape and other class levels
Independent Eigenstates of Angular Momentum in a Quantum N-body System
The global rotational degrees of freedom in the Schr\"{o}dinger equation for
an -body system are completely separated from the internal ones. After
removing the motion of center of mass, we find a complete set of
independent base functions with the angular momentum . These are
homogeneous polynomials in the components of the coordinate vectors and the
solutions of the Laplace equation, where the Euler angles do not appear
explicitly. Any function with given angular momentum and given parity in the
system can be expanded with respect to the base functions, where the
coefficients are the functions of the internal variables. With the right choice
of the base functions and the internal variables, we explicitly establish the
equations for those functions. Only (3N-6) internal variables are involved both
in the functions and in the equations. The permutation symmetry of the wave
functions for identical particles is discussed.Comment: 24 pages, no figure, one Table, RevTex, Will be published in Phys.
Rev. A 64, 0421xx (Oct. 2001
Two charged strangeonium-like structures observable in the process
Via the Initial Single Pion Emission (ISPE) mechanism, we study the
invariant mass spectrum distribution of . Our calculation indicates there exist a sharp peak
structure () close to the threshold and a broad
structure () near the threshold. In addition, we
also investigate the process due to
the ISPE mechanism, where a sharp peak around the threshold
appears in the invariant mass spectrum distribution. We
suggest to carry out the search for these charged strangeonium-like structures
in future experiment, especially Belle II, Super-B and BESIII.Comment: 7 pages, 5 figures. Accepted by Eur. Phys. J.
Recent developments in planet migration theory
Planetary migration is the process by which a forming planet undergoes a
drift of its semi-major axis caused by the tidal interaction with its parent
protoplanetary disc. One of the key quantities to assess the migration of
embedded planets is the tidal torque between the disc and planet, which has two
components: the Lindblad torque and the corotation torque. We review the latest
results on both torque components for planets on circular orbits, with a
special emphasis on the various processes that give rise to additional, large
components of the corotation torque, and those contributing to the saturation
of this torque. These additional components of the corotation torque could help
address the shortcomings that have recently been exposed by models of planet
population syntheses. We also review recent results concerning the migration of
giant planets that carve gaps in the disc (type II migration) and the migration
of sub-giant planets that open partial gaps in massive discs (type III
migration).Comment: 52 pages, 18 figures. Review article to be published in "Tidal
effects in Astronomy and Astrophysics", Lecture Notes in Physic
Intestinal geotrichosis in a German shepherd
A 4-year-old sexually intact male German shepherd with a 3-month history of chronic watery diarrhea was referred to the Veterinary Medical Teaching Hospital. Dehydration and serum biochemistry revealed hypoalbuminemia, and fecal material contained a large quantity of round arthroconidia that were microscopically observed. A specimen was submitted for fungal culture and yielded a white to cream-colored subsurface colony. Microorganisms derived from the colony exhibited chains of smooth, septate hyaline hyphae that were producing 1-celled arthroconidia. Geotrichum candidum was thus identified. Colonoscopic features included erythema, edema, and loss of the usual fine vascular pattern, with granularity of the mucosa of the descending column. Treatment consisted of oral administration of ketoconazole and metronidazole for 3 weeks, while oral prednisolone was tapered after 1 week of therapy. The dog's feces gradually softened after the first treatment. Fecal smear examination revealed no trace of the yeast-like microbes 7 days after treatment was administered, and 2 weeks post-treatment the dog passed well-formed stools and had regained its normal body weight. The previously observed clinical signs did not reoccur, even after oral medication was withdrawn
A Quantitative Model of Energy Release and Heating by Time-dependent, Localized Reconnection in a Flare with a Thermal Loop-top X-ray Source
We present a quantitative model of the magnetic energy stored and then
released through magnetic reconnection for a flare on 26 Feb 2004. This flare,
well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only
for a brief, early phase. Throughout the main period of energy release there is
a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare
loops. Our model describes the heating and compression of such a source by
localized, transient magnetic reconnection. It is a three-dimensional
generalization of the Petschek model whereby Alfven-speed retraction following
reconnection drives supersonic inflows parallel to the field lines, which form
shocks heating, compressing, and confining a loop-top plasma plug. The
confining inflows provide longer life than a freely-expanding or
conductively-cooling plasma of similar size and temperature. Superposition of
successive transient episodes of localized reconnection across a current sheet
produces an apparently persistent, localized source of high-temperature
emission. The temperature of the source decreases smoothly on a time scale
consistent with observations, far longer than the cooling time of a single
plug. Built from a disordered collection of small plugs, the source need not
have the coherent jet-like structure predicted by steady-state reconnection
models. This new model predicts temperatures and emission measure consistent
with the observations of 26 Feb 2004. Furthermore, the total energy released by
the flare is found to be roughly consistent with that predicted by the model.
Only a small fraction of the energy released appears in the super-hot source at
any one time, but roughly a quarter of the flare energy is thermalized by the
reconnection shocks over the course of the flare. All energy is presumed to
ultimately appear in the lower-temperature T<20 MK, post-flare loops
Star and Planet Formation with ALMA: an Overview
Submillimeter observations with ALMA will be the essential next step in our
understanding of how stars and planets form. Key projects range from detailed
imaging of the collapse of pre-stellar cores and measuring the accretion rate
of matter onto deeply embedded protostars, to unravelling the chemistry and
dynamics of high-mass star-forming clusters and high-spatial resolution studies
of protoplanetary disks down to the 1 AU scale.Comment: Invited review, 8 pages, 5 figures; to appear in the proceedings of
"Science with ALMA: a New Era for Astrophysics". Astrophysics & Space
Science, in pres
- …