461 research outputs found

    Evolution and nucleosynthesis of primordial low mass stars

    Get PDF
    We discuss in detail the evolutionary properties of low mass stars M< 1 M(Solar) having metallicity lower than Z=10^(-6) from the pre- main sequence up to (almost) the end of the Asymptotic Giant Branch phase. We also discuss the possibility that the large [C,N/Fe] observed on the surface of the most Iron poor star presently known, HE0107-5240, may be attributed to the autopollution induced by the penetration of the He convective shell into the H rich mantle during the He core flash of a low mass, very low metallicity star. On the basis of a quite detailed analysis, we conclude that the autopollution scenario cannot be responsible for the observed chemical composition of HE0107-5240

    Drug delivery applications of three-dimensional printed (3DP) mesoporous scaffolds

    Get PDF
    Mesoporous materials are structures characterized by a well-ordered large pore system with uniform porous dimensions ranging between 2 and 50 nm. Typical samples are zeolite, carbon molecular sieves, porous metal oxides, organic and inorganic porous hybrid and pillared materials, silica clathrate and clathrate hydrates compounds. Improvement in biochemistry and materials science led to the design and implementation of different types of porous materials ranging from rigid to soft two-dimensional (2D) and three-dimensional (3D) skeletons. The present review focuses on the use of three-dimensional printed (3DP) mesoporous scaffolds suitable for a wide range of drug delivery applications, due to their intrinsic high surface area and high pore volume. In the first part, the importance of the porosity of materials employed for drug delivery application was discussed focusing on mesoporous materials. At the end of the introduction, hard and soft templating synthesis for the realization of ordered 2D/3D mesostructured porous materials were described. In the second part, 3DP fabrication techniques, including fused deposition modelling, material jetting as inkjet printing, electron beam melting, selective laser sintering, stereolithography and digital light processing, electrospinning, and two-photon polymerization were described. In the last section, through recent bibliographic research, a wide number of 3D printed mesoporous materials, for in vitro and in vivo drug delivery applications, most of which relate to bone cells and tissues, were presented and summarized in a table in which all the technical and bibliographical details were reported. This review highlights, to a very cross-sectional audience, how the interdisciplinarity of certain branches of knowledge, as those of materials science and nano-microfabrication are, represent a growing valuable aid in the advanced forum for the science and technology of pharmaceutics and biopharmaceutics

    Synthetic properties of bright metal-poor variables. I. "Anomalous" Cepheids

    Get PDF
    We present new grids of evolutionary models for the so-colled ``Anomalous'' Cepheids (ACs), adopting Z=0.0001 and various assumptions on the progenitor mass and mass-loss efficiency. These computations are combined with the results of our previous set of pulsation models and used to build synthetic populations of the predicted pulsators as well as to provide a Mass-Luminosity relation in the absence of mass-loss. We investigate the effect of mass-loss on the predicted boundaries of the instability strip and we find that the only significant dependence occurs in the Period-Magnitude plane, where the synthetic distribution of the pulsators is, on average, brighter by about 0.1 mag than the one in absence of mass-loss. Tight Period-Magnitude relations are derived in the K band for both fundamental and first overtone pulsators, providing a useful tool for distance evaluations with an intrinsic uncertainty of about 0.15 mag, which decreases to about 0.04 mag if the mass term is taken into account. The constraints provided by the evolutionary models are used to derive evolutionary (i.e, mass-independent) Period-Magnitude-Color relations which provide distance determinations with a formal uncertainty of the order of about 0.1 mag, once the intrinsic colors are well known. We also use model computations from the literature to investigate the effect of metal content both on the instability strip and on the evolutionary Period-Magnitude-Color relations. Finally, we compare our theoretical predictions with observed variables and we confirm that a secure identification of actual ACs requires the simultaneous information on period, magnitude and color, that also provide constraints on the pulsation mode.Comment: accepte

    Fabrication of biocompatible free-standing nanopatterned films for primary neuronal cultures

    Get PDF
    Devising and constructing biocompatible devices for nervous system regeneration is an extremely challenging task. Besides tackling the issue of biocompatibility, biomaterials for neuroscience applications should mimic the complex environment of the extracellular matrix, which in vivo provides neurons with a series of cues and signals to guide cells towards their appropriate targets. In this work, a novel nanopatterned biocompatible poly-ε-caprolactone (PCL) film is realized to assist the attachment and growth of primary hippocampal neurons. Costly and time-consuming processes can be avoided using plasma-surface nanotexturing obtained by a mixed gas SF6/Ar at -5 °C. The intrinsic composition and line topography of nanopatterned PCL ensure healthy development of the neuronal network, as shown by confocal microscopy, by analysing the expression of a range of neuronal markers typical of mature cultures, as well as by scanning electron microscopy. In addition, we show that surface nanopatterning improves differentiation of neurons compared to flat PCL films, while no neural growth was observed on either flat or nanopatterned substrates in the absence of a poly-d-lysine coating. Thus, we successfully optimized a nanofabrication protocol to obtain nanostructured PCL layers endowed with several mechanical and structural characteristics that make them a promising, versatile tool for future tissue engineering studies aimed at neural tissue regeneration

    Dna studies: Latest spectroscopic and structural approaches

    Get PDF
    This review looks at the different approaches, techniques, and materials devoted to DNA studies. In the past few decades, DNA nanotechnology, micro-fabrication, imaging, and spectro-scopies have been tailored and combined for a broad range of medical-oriented applications. The continuous advancements in miniaturization of the devices, as well as the continuous need to study biological material structures and interactions, down to single molecules, have increase the interdisciplinarity of emerging technologies. In the following paragraphs, we will focus on recent sensing approaches, with a particular effort attributed to cutting-edge techniques for structural and mechanical studies of nucleic acids

    Evolved stars in the Local Group galaxies - II. AGB, RSG stars and dust production in IC10

    Get PDF
    We study the evolved stellar population of the Local Group galaxy IC10, with the aim of characterizing the individual sources observed and to derive global information on the galaxy, primarily the star formation history and the dust production rate. To this aim, we use evolutionary sequences of low- and intermediate-mass (M<8 M⊙M < 8~M_{\odot}) stars, evolved through the asymptotic giant branch phase, with the inclusion of the description of dust formation. We also use models of higher mass stars. From the analysis of the distribution of stars in the observational planes obtained with IR bands, we find that the reddening and distance of IC10 are E(B−V)=1.85E(B-V)=1.85 mag and d=0.77d=0.77 Mpc, respectively. The evolved stellar population is dominated by carbon stars, that account for 40%40\% of the sources brighter than the tip of the red giant branch. Most of these stars descend from ∼1.1−1.3 M⊙\sim 1.1-1.3~M_{\odot} progenitors, formed during the major epoch of star formation, which occurred ∼2.5\sim 2.5 Gyr ago. The presence of a significant number of bright stars indicates that IC10 has been site of significant star formation in recent epochs and currently hosts a group of massive stars in the core helium-burning phase. Dust production in this galaxy is largely dominated by carbon stars; the overall dust production rate estimated is 7×10−6 M⊙7\times 10^{-6}~M_{\odot}/yr.Comment: Manuscript accepted for publication in MNRAS on 11 june 2018;17 pages, 10 figure

    Fabrication and Applications of Micro/Nanostructured Devices for Tissue Engineering

    Get PDF
    Nanotechnology allows the realization of new materials and devices with basic structural unit in the range of 1–100 nm and characterized by gaining control at the atomic, molecular, and supramolecular level. Reducing the dimensions of a material into the nanoscale range usually results in the change of its physiochemical properties such as reactivity, crystallinity, and solubility. This review treats the convergence of last research news at the interface of nanostructured biomaterials and tissue engineering for emerging biomedical technologies such as scaffolding and tissue regeneration. The present review is organized into three main sections. The introduction concerns an overview of the increasing utility of nanostructured materials in the field of tissue engineering. It elucidates how nanotechnology, by working in the submicron length scale, assures the realization of a biocompatible interface that is able to reproduce the physiological cell–matrix interaction. The second, more technical section, concerns the design and fabrication of biocompatible surface characterized by micro- and submicroscale features, using microfabrication, nanolithography, and miscellaneous nanolithographic techniques. In the last part, we review the ongoing tissue engineering application of nanostructured materials and scaffolds in different fields such as neurology, cardiology, orthopedics, and skin tissue regeneration

    Heavy element abundances in giant stars of the globular clusters M4 and M5

    Full text link
    We present a comprehensive abundance analysis of 27 heavy elements in bright giant stars of the globular clusters M4 and M5 based on high resolution, high signal-to-noise ratio spectra obtained with the Magellan Clay Telescope. We confirm and expand upon previous results for these clusters by showing that (1) all elements heavier than, and including, Si have constant abundances within each cluster, (2) the elements from Ca to Ni have indistinguishable compositions in M4 and M5, (3) Si, Cu, Zn, and all s-process elements are approximately 0.3 dex overabundant in M4 relative to M5, and (4) the r-process elements Sm, Eu, Gd, and Th are slightly overabundant in M5 relative to M4. The cluster-to-cluster abundance differences for Cu and Zn are intriguing, especially in light of their uncertain nucleosynthetic origins. We confirm that stars other than Type Ia supernovae must produce significant amounts of Cu and Zn at or below the clusters' metallicities. If intermediate-mass AGB stars or massive stars are responsible for the Cu and Zn enhancements in M4, the similar [Rb/Zr] ratios and (preliminary) Mg isotope ratios in both clusters may be problematic for either scenario. For the elements from Ba to Hf, we assume that the s- and r-process contributions are scaled versions of the solar s- and r-process abundances. We quantify the relative fractions of s- and r-process material for each cluster and show that they provide an excellent fit to the observed abundances.Comment: Accepted for publication in Ap
    • …
    corecore