39 research outputs found

    1-methylnicotinamide and its structural analog 1,4-dimethylpyridine for the prevention of cancer metastasis

    Get PDF
    Background: 1-methylnicotinamide (1-MNA), an endogenous metabolite of nicotinamide, has recently gained interest due to its anti-inflammatory and anti-thrombotic activities linked to the COX-2/PGI2 pathway. Given the previously reported anti-metastatic activity of prostacyclin (PGI2), we aimed to assess the effects of 1-MNA and its structurally related analog, 1,4-dimethylpyridine (1,4-DMP), in the prevention of cancer metastasis. Methods: All the studies on the anti-tumor and anti-metastatic activity of 1-MNA and 1,4-DMP were conducted using the model of murine mammary gland cancer (4T1) transplanted either orthotopically or intravenously into female BALB/c mouse. Additionally, the effect of the investigated molecules on cancer cell-induced angiogenesis was estimated using the matrigel plug assay utilizing 4T1 cells as a source of pro-angiogenic factors. Results: Neither 1-MNA nor 1,4-DMP, when given in a monotherapy of metastatic cancer, influenced the growth of 4T1 primary tumors transplanted orthotopically; however, both compounds tended to inhibit 4T1 metastases formation in lungs of mice that were orthotopically or intravenously inoculated with 4T1 or 4T1-luc2-tdTomato cells, respectively. Additionally, while 1-MNA enhanced tumor vasculature formation and markedly increased PGI2 generation, 1,4-DMP did not have such an effect. The anti-metastatic activity of 1-MNA and 1,4-DMP was further confirmed when both agents were applied with a cytostatic drug in a combined treatment of 4T1 murine mammary gland cancer what resulted in up to 80 % diminution of lung metastases formation. Conclusions: The results of the studies presented below indicate that 1-MNA and its structural analog 1,4-DMP prevent metastasis and might be beneficially implemented into the treatment of metastatic breast cancer to ensure a comprehensive strategy of metastasis control

    Numerical data on the shear stress distribution generated by a rotating rod within a stationary ring over a 35-mm cell culture dish

    No full text
    The data contained within this article relate to a rotating rod within a stationary ring that was used to generate shear stress on cells and tissues via a medium. The geometry of the rotating rod within a stationary ring was designed to work with a 35-mm diameter culture dish. The data of the shear stress distribution are presented in terms of area-weighted average shear stress and the uniformity index, which were calculated for medium volumes of 4 and 5 ml at various rotational speeds ranging from 0 to 1000 rpm

    Mechanical force-induced TGFBI increases expression of SOST/POSTN by hPDL cells

    No full text
    The aim of this study was to investigate the response of human periodontal ligament (hPDL) fibroblasts to an intermittent compressive force and its effect on the expression of SOST, POSTN, and TGFB1. A computerized cell compressive force loading apparatus was introduced, and hPDL cells were subjected to intermittent compressive force. The changes in messenger RNA (mRNA) and protein expression were monitored by real-time polymerase chain reaction and Western blot analysis, respectively. An increased expression of SOST, POSTN, and TGFB1 was observed in a time-dependent fashion. Addition of cycloheximide, a transforming growth factor (TGF)-β inhibitor (SB431542), or a neutralizing antibody against TGF-β1 attenuated the force-induced expression of SOST and POSTN as well as sclerostin and periostin, indicating a role of TGF-β1 in the pressure-induced expression of these proteins. Enzyme-linked immunosorbent assay analysis revealed an increased level of TGF-β1 in the cell extracts but not in the medium, suggesting that intermittent compressive force promoted the accumulation of TGF-β1 in the cells or their surrounding matrix. In conclusion, an intermittent compressive force regulates SOST/POSTN expression by hPDL cells via the TGF-β1 signaling pathway. Since these proteins play important roles in the homeostasis of the periodontal tissue, our results indicate the importance of masticatory forces in this process

    Data for: Experimental data on mechanical behavior and numerical data on tensile stress distribution of a hyperelastic Polydimethysiloxane (PDMS) based membrane for cell culture

    No full text
    Data on mechanical behavior of an in-house PDMS based membrane obtained from the experiment and the 2nd order polynomial mathematical model.THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV

    Electrochemical reaction engineering of polymer electrolyte fuel cell

    No full text
    Although fuel cells can be considered as a type of reactor, methods of kinetic analysis and reactor modeling from the viewpoint of chemical reaction engineering have not yet been established. The rate of an electrochemical reaction is a function of concentration, temperature, and interfacial potential difference (or electromotive force). This study examined the cathode reaction in a polymer electrolyte fuel cell, in which oxygen and protons react over platinum in the catalyst layer (CL). The effects of the oxygen partial pressure and the cathode electromotive force on the reaction rate were assessed. Resistance to proton transport increases the electromotive force and reducing the reaction rate. It was established that the effectiveness factor of the cathode CL is determined by competition between the reaction and mass transport of oxygen and protons. Two dimensionless moduli that govern the cathode behavior are proposed as a means of depicting the processes in the cell

    Prostacyclin analog promotes human dental pulp cell migration via a matrix metalloproteinase 9–related pathway

    No full text
    Introduction: During dental pulp healing, progenitor cells migrate to the injured site. This study investigated the effect of iloprost (an exogenous prostacyclin [PGI2]) on enhancing human dental pulp cell (HDPC) migration and its underlying mechanism. Methods: HDPC migration was analyzed using a wound scratch assay. HDPCs were obtained from extracted teeth and cultured in the presence of iloprost for 24 and 72 hours. Immunofluorescent staining for matrix metalloproteinase 9 (MMP-9), quantitative polymerase chain reaction gene expression analysis, gelatin zymography, and enzyme-linked immunosorbent assay of MMP-9 expression were performed. A PGI2 (IP) antagonist, protein kinase A (PKA) inhibitor, and MMP-9 inhibitor were used to inhibit the IP receptor, PKA signaling pathway, and MMP-9 activity, respectively. Results: A mechanically applied scratch in HDPC cultures closed more rapidly in the presence of iloprost. This result coincided with increased MMP-9 messenger RNA and protein expression and higher gelatinase activity. These iloprost-enhanced effects were inhibited by an IP receptor antagonist or a PKA inhibitor. Forskolin, a PKA activator, increased MMP-9 expression concomitant with increased migration. The application of a selective MMP-9 inhibitor resulted in decreased iloprost-induced migration. Conclusions: MMPs play an important role in cell migration by degrading components of the extracellular matrix. In this study, iloprost accelerated HDPC migration in a wound scratch assay. MMP-9 expression was increased concomitantly by iloprost and appeared to be mediated by the IP-PKA pathway. These observations suggest that iloprost may enhance dental pulp tissue healing by up-regulating MMP-9. The PGI2 analog might be a promising biomolecule in dental pulp regenerative treatment
    corecore