5,638 research outputs found
Numerical Simulation of Magnetic Interactions in Polycrystalline YFeO3
The magnetic behavior of polycrystalline yttrium orthoferrite was studied
from the experimental and theoretical points of view. Magnetization
measurements up to 170 kOe were carried out on a single-phase YFeO3 sample
synthesized from heterobimetallic alkoxides. The complex interplay between
weak-ferromagnetic and antiferromagnetic interactions, observed in the
experimental M(H) curves, was successfully simulated by locally minimizing the
magnetic energy of two interacting Fe sublattices. The resulting values of
exchange field (H_E = 5590 kOe), anisotropy field (H_A = 0.5 kOe) and
Dzyaloshinsky-Moriya antisymmetric field (H_D = 149 kOe) are in good agreement
with previous reports on this system.Comment: 26 pages, 9 figure
Nonextensive Thermostatistics and the H-Theorem
The kinetic foundations of Tsallis' nonextensive thermostatistics are
investigated through Boltzmann's transport equation approach. Our analysis
follows from a nonextensive generalization of the ``molecular chaos
hypothesis". For , the -transport equation satisfies an -theorem
based on Tsallis entropy. It is also proved that the collisional equilibrium is
given by Tsallis' -nonextensive velocity distribution.Comment: 4 pages, no figures, corrected some typo
Effect of angular momentum on equilibrium properties of a self-gravitating system
The microcanonical properties of a two dimensional system of N classical
particles interacting via a smoothed Newtonian potential as a function of the
total energy E and the total angular momentum L are discussed. In order to
estimate suitable observables a numerical method based on an importance
sampling algorithm is presented. The entropy surface shows a negative specific
heat region at fixed L for all L. Observables probing the average mass
distribution are used to understand the link between thermostatistical
properties and the spatial distribution of particles. In order to define a
phase in non-extensive system we introduce a more general observable than the
one proposed by Gross and Votyakov [Eur. Phys. J. B:15, 115 (2000)]: the sign
of the largest eigenvalue of the entropy surface curvature. At large E the
gravitational system is in a homogeneous gas phase. At low E there are several
collapse phases; at L=0 there is a single cluster phase and for L>0 there are
several phases with 2 clusters. All these pure phases are separated by first
order phase transition regions. The signal of critical behaviour emerges at
different points of the parameter space (E,L). We also discuss the ensemble
introduced in a recent pre-print by Klinko & Miller; this ensemble is the
canonical analogue of the one at constant energy and constant angular momentum.
We show that a huge loss of informations appears if we treat the system as a
function of intensive parameters: besides the known non-equivalence at first
order phase transitions, there exit in the microcanonical ensemble some values
of the temperature and the angular velocity for which the corresponding
canonical ensemble does not exist, i.e. the partition sum diverges.Comment: 17 pages, 11 figures, submitted to Phys. Rev.
Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits
The interaction of optical and mechanical modes in nanoscale optomechanical
systems has been widely studied for applications ranging from sensing to
quantum information science. Here, we develop a platform for cavity
optomechanical circuits in which localized and interacting 1550 nm photons and
2.4 GHz phonons are combined with photonic and phononic waveguides. Working in
GaAs facilitates manipulation of the localized mechanical mode either with a
radio frequency field through the piezo-electric effect, or optically through
the strong photoelastic effect. We use this to demonstrate a novel acoustic
wave interference effect, analogous to coherent population trapping in atomic
systems, in which the coherent mechanical motion induced by the electrical
drive can be completely cancelled out by the optically-driven motion. The
ability to manipulate cavity optomechanical systems with equal facility through
either photonic or phononic channels enables new device and system
architectures for signal transduction between the optical, electrical, and
mechanical domains
Accelerating Cold Dark Matter Cosmology ()
A new kind of accelerating flat model with no dark energy that is fully
dominated by cold dark matter (CDM) is investigated. The number of CDM
particles is not conserved and the present accelerating stage is a consequence
of the negative pressure describing the irreversible process of gravitational
particle creation. A related work involving accelerating CDM cosmology has been
discussed before the SNe observations [Lima, Abramo & Germano, Phys. Rev. D53,
4287 (1996)]. However, in order to have a transition from a decelerating to an
accelerating regime at low redshifts, the matter creation rate proposed here
includes a constant term of the order of the Hubble parameter. In this case,
does not need to be small in order to solve the age problem and the
transition happens even if the matter creation is negligible during the
radiation and part of the matter dominated phase. Therefore, instead of the
vacuum dominance at redshifts of the order of a few, the present accelerating
stage in this sort of Einstein-de Sitter CDM cosmology is a consequence of the
gravitational particle creation process. As an extra bonus, in the present
scenario does not exist the coincidence problem that plagues models with
dominance of dark energy. The model is able to harmonize a CDM picture with the
present age of the universe, the latest measurements of the Hubble parameter
and the Supernovae observations.Comment: 9 pages, 6 figures, typos corrected, references added, discussion in
Appendix B extende
Results of the engineering run of the coherent neutrino nucleus interaction experiment (CONNIE)
The CONNIE detector prototype is operating at a distance of 30 m from the core of a 3.8 GWth nuclear reactor with the goal of establishing Charge-Coupled Devices (CCD) as a new technology for the detection of coherent elastic neutrino-nucleus scattering. We report on the results of the engineering run with an active mass of 4 g of silicon. The CCD array is described, and the performance observed during the first year is discussed. A compact passive shield was deployed around the detector, producing an order of magnitude reduction in the background rate. The remaining background observed during the run was stable, and dominated by internal contamination in the detector packaging materials. The in-situ calibration of the detector using X-ray lines from fluorescence demonstrates good stability of the readout system. The event rates with the reactor ON and OFF are compared, and no excess is observed coming from nuclear fission at the power plant. The upper limit for the neutrino event rate is set two orders of magnitude above the expectations for the standard model. The results demonstrate the cryogenic CCD-based detector can be remotely operated at the reactor site with stable noise below2 e RMS and stable background rates. The success of the engineering test provides a clear path for the upgraded 100 g detector to be deployed during 2016.Fil: Aguilar Arevalo, A.. Universidad Nacional Autónoma de México; MéxicoFil: Bertou, Xavier Pierre Louis. Comisión Nacional de Energía Atómica; Argentina. Comisión Nacional de Energía Atómica. Fundación José A. Balseiro; ArgentinaFil: Bonifazi, C.. Universidade Federal do Rio de Janeiro; BrasilFil: Butner, M.. Fermi National Accelerator Laboratory; Estados UnidosFil: Cancelo, G.. Fermi National Accelerator Laboratory; Estados UnidosFil: Castañeda Vazquez, A.. Universidad Nacional Autónoma de México; MéxicoFil: Cervantes Vergara, B.. Universidad Nacional Autónoma de México; MéxicoFil: Chavez, C. R.. Universidad Nacional de Asunción; ParaguayFil: Da Motta, H.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: D'Olivo, J. C.. Universidad Nacional Autónoma de México; MéxicoFil: Dos Anjos, J.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Estrada, J.. Fermi National Accelerator Laboratory; Estados UnidosFil: Fernández Moroni, Guillermo. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto ; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ford, R.. Fermi National Accelerator Laboratory; Estados UnidosFil: Foguel, A.. Centro Brasileiro de Pesquisas Físicas; Brasil. Universidade Federal do Rio de Janeiro; BrasilFil: Hernandez Torres, K. P.. Universidad Nacional Autónoma de México; MéxicoFil: Izraelevitch, F.. Fermi National Accelerator Laboratory; Estados UnidosFil: Kavner, A.. University of Michigan; Estados UnidosFil: Kilminster, B.. Universitat Zurich; SuizaFil: Kuk, K.. Fermi National Accelerator Laboratory; Estados UnidosFil: Lima Jr, H. P.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Makler, M.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Molina, J.. Universidad Nacional de Asunción; ParaguayFil: Moreno Granados, G.. Universidad Nacional Autónoma de México; MéxicoFil: Moro, Juan Manuel. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Paolini, Eduardo Emilio. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto ; ArgentinaFil: Sofo Haro, Miguel Francisco. Comision Nacional de Energia Atomica. Gerencia D/area de Energia Nuclear; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tiffenberg, Javier Sebastian. Fermi National Accelerator Laboratory; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Trillaud, F.. Universidad Nacional Autónoma de México; MéxicoFil: Wagner, S.. Centro Brasileiro de Pesquisas Físicas; Brasil. Pontificia Universidade Católica do Rio Grande do Sul; Brasi
Network Physiology reveals relations between network topology and physiological function
The human organism is an integrated network where complex physiologic
systems, each with its own regulatory mechanisms, continuously interact, and
where failure of one system can trigger a breakdown of the entire network.
Identifying and quantifying dynamical networks of diverse systems with
different types of interactions is a challenge. Here, we develop a framework to
probe interactions among diverse systems, and we identify a physiologic
network. We find that each physiologic state is characterized by a specific
network structure, demonstrating a robust interplay between network topology
and function. Across physiologic states the network undergoes topological
transitions associated with fast reorganization of physiologic interactions on
time scales of a few minutes, indicating high network flexibility in response
to perturbations. The proposed system-wide integrative approach may facilitate
the development of a new field, Network Physiology.Comment: 12 pages, 9 figure
- …