16,004 research outputs found

    Critical wave-packet dynamics in the power-law bond disordered Anderson Model

    Full text link
    We investigate the wave-packet dynamics of the power-law bond disordered one-dimensional Anderson model with hopping amplitudes decreasing as HnmnmαH_{nm}\propto |n-m|^{-\alpha}. We consider the critical case (α=1\alpha=1). Using an exact diagonalization scheme on finite chains, we compute the participation moments of all stationary energy eigenstates as well as the spreading of an initially localized wave-packet. The eigenstates multifractality is characterized by the set of fractal dimensions of the participation moments. The wave-packet shows a diffusive-like spread developing a power-law tail and achieves a stationary non-uniform profile after reflecting at the chain boundaries. As a consequence, the time-dependent participation moments exhibit two distinct scaling regimes. We formulate a finite-size scaling hypothesis for the participation moments relating their scaling exponents to the ones governing the return probability and wave-function power-law decays

    The role of the disorder range and electronic energy in the graphene nanoribbons perfect transmission

    Get PDF
    Numerical calculations based on the recursive Green's functions method in the tight-binding approximation are performed to calculate the dimensionless conductance gg in disordered graphene nanoribbons with Gaussian scatterers. The influence of the transition from short- to long-ranged disorder on gg is studied as well as its effects on the formation of a perfectly conducting channel. We also investigate the dependence of electronic energy on the perfectly conducting channel. We propose and calculate a backscattering estimative in order to establish the connection between the perfectly conducting channel (with g=1g=1) and the amount of intervalley scattering.Comment: 7 pages, 9 figures. To be published on Phys. Rev.

    Magnetic phases evolution in the LaMn1-xFexO3+y system

    Full text link
    We have investigated the crystal structure and magnetic properties for polycrystalline samples of LaMn1-xFexO3+y, in the whole range x=0.0 to x=1.0, prepared by solid state reaction in air. All samples show the ORT-2 orthorhombic structure that suppresses the Jahn-Teller distortion, thus favoring a ferromagnetic (FM) superexchange (SE) interaction between Mn^{3+}-O-Mn^{3+}. For x=0.0 the oxygen excess (y ~ 0.09) produces vacancies in the La and Mn sites and generates a fraction around 18% of Mn^{4+} ions and 82% of the usual Mn^{3+} ions, with possible double exchange interaction between them. The Fe doping in this system is known to produce only stable Fe^{3+} ions. We find an evolution from a fairly strong FM phase with a Curie temperature T_{C} ~ 160 K, for x=0.0, to an antiferromagnetic (AFM) phase with T_{N} = 790 K, for x=1.0, accompanied by clear signatures of a cluster-glass behavior. For intermediate Fe contents a mixed-phase state occurs, with a gradual decrease (increase) of the FM (AFM) phase, accompanied by a systematic transition broadening for 0.2 < x < 0.7. A model based on the expected exchange interaction among the various magnetic-ion types, accounts very well for the saturation-magnetization dependence on Fe doping.Comment: 27 pages, 9 figure

    Numerical Simulation of Magnetic Interactions in Polycrystalline YFeO3

    Full text link
    The magnetic behavior of polycrystalline yttrium orthoferrite was studied from the experimental and theoretical points of view. Magnetization measurements up to 170 kOe were carried out on a single-phase YFeO3 sample synthesized from heterobimetallic alkoxides. The complex interplay between weak-ferromagnetic and antiferromagnetic interactions, observed in the experimental M(H) curves, was successfully simulated by locally minimizing the magnetic energy of two interacting Fe sublattices. The resulting values of exchange field (H_E = 5590 kOe), anisotropy field (H_A = 0.5 kOe) and Dzyaloshinsky-Moriya antisymmetric field (H_D = 149 kOe) are in good agreement with previous reports on this system.Comment: 26 pages, 9 figure

    Caracterização de substâncias húmicas extraídas de solo tratado com carvão vegetal (biochar).

    Get PDF
    As Terras Pretas de Índio (TPI) são solos antropogênicos encontrados na Amazônia, que têm alto teor de carbono (C) orgânico, alta fertilidade e alta capacidade de recuperação. Os TPI possuem estas características devido ao caráter pirogênico do C que neles se encontra, e que se manifestam na alta proporção de estruturas aromáticas policondensadas com grupos funcionais carboxílicos originadas das alterações naturais de biomassa carbonizada adicionada ao solo pelas populações indígenas pré-colombianas

    On Matrix Superpotential and Three-Component Normal Modes

    Full text link
    We consider the supersymmetric quantum mechanics (SUSY QM) with three- component normal modes for the Bogomol'nyi-Prasad-Sommerfield (BPS) states. An explicit form of the SUSY QM matrix superpotential is presented and the corresponding three-component bosonic zero-mode eigenfunction is investigated.Comment: 17 pages, no figure. Paper accepted for publication in Journal of Physics A: Mathematical and Theoretica

    Clustering, Angular Size and Dark Energy

    Full text link
    The influence of dark matter inhomogeneities on the angular size-redshift test is investigated for a large class of flat cosmological models driven by dark energy plus a cold dark matter component (XCDM model). The results are presented in two steps. First, the mass inhomogeneities are modeled by a generalized Zeldovich-Kantowski-Dyer-Roeder (ZKDR) distance which is characterized by a smoothness parameter α(z)\alpha(z) and a power index γ\gamma, and, second, we provide a statistical analysis to angular size data for a large sample of milliarcsecond compact radio sources. As a general result, we have found that the α\alpha parameter is totally unconstrained by this sample of angular diameter data.Comment: 9 pages, 7 figures, accepted in Physical Review
    corecore