35,480 research outputs found
Quantum information processing with space-division multiplexing optical fibres
The optical fibre is an essential tool for our communication infrastructure
since it is the main transmission channel for optical communications. The
latest major advance in optical fibre technology is spatial division
multiplexing (SDM), where new fibre designs and components establish multiple
co-existing data channels based on light propagation over distinct transverse
optical modes. Simultaneously, there have been many recent developments in the
field of quantum information processing (QIP), with novel protocols and devices
in areas such as computing, communication and metrology. Here, we review recent
works implementing QIP protocols with SDM optical fibres, and discuss new
possibilities for manipulating quantum systems based on this technology.Comment: Originally submitted version. Please see published version for
improved layout, new tables and updated references following review proces
The specific entropy of elliptical galaxies: an explanation for profile-shape distance indicators?
Dynamical systems in equilibrium have a stationary entropy; we suggest that
elliptical galaxies, as stellar systems in a stage of quasi-equilibrium, may
have a unique specific entropy. This uniqueness, a priori unknown, should be
reflected in correlations between the parameters describing the mass (light)
distribution in galaxies. Following recent photometrical work (Caon et al.
1993; Graham & Colless 1997; Prugniel & Simien 1997), we use the Sersic law to
describe the light profile of elliptical galaxies and an analytical
approximation to its three dimensional deprojection. The specific entropy is
calculated supposing that the galaxy behaves as a spherical, isotropic,
one-component system in hydrostatic equilibrium, obeying the ideal gas state
equations. We predict a relation between the 3 parameters of the Sersic,
defining a surface in the parameter space, an `Entropic Plane', by analogy with
the well-known Fundamental Plane. We have analysed elliptical galaxies in Coma
and ABCG 85 clusters and a group of galaxies (associated with NGC 4839). We
show that the galaxies in clusters follow closely a relation predicted by the
constant specific entropy hypothesis with a one-sigma dispersion of 9.5% around
the mean value of the specific entropy. Assuming that the specific entropy is
also the same for galaxies of different clusters, we are able to derive
relative distances between the studied clusters. If the errors are only due to
the determination of the specific entropy (about 10%), then the error in the
relative distance determination should be less than 20% for rich clusters. We
suggest that the unique specific entropy may provide a physical explanation for
the distance indicators based on the Sersic profile put forward by Young &
Currie (1994, 1995) and discussed by Binggeli & Jerjen (1998).Comment: Submitted to MNRAS (05/05/99), 15 pages, 10 figure
The Mayer series of the Lennard-Jones gas: improved bounds for the convergence radius
We provide a lower bound for the convergence radius of the Mayer series of
the Lennard-Jones gas which strongly improves on the classical bound obtained
by Penrose and Ruelle 1963. To obtain this result we use an alternative
estimate recently proposed by Morais et al. (J. Stat. Phys. 2014) for a
restricted class of stable and tempered pair potentials (namely those which can
be written as the sum of a non-negative potential plus an absolutely integrable
and stable potential) combined with a method developed by Locatelli and Schoen
(J. Glob. Optim. 2002) for establishing a lower bound for the minimal
interatomic distance between particles interacting via a Morse potential in a
cluster of minimum-energy configurations
- …