20,808 research outputs found

    Multi-domain active sound control and noise shielding

    Get PDF
    This paper describes an active sound control methodology based on difference potentials. The main feature of this methodology is its ability to automatically preserve “wanted” sound within a domain while canceling “unwanted” noise from outside the domain. This method of preservation of the wanted sounds by active shielding control is demonstrated with various broadband and realistic sound sources such as human voice and music in multiple domains in a one-dimensional enclosure. Unlike many other conventional active control methods, the proposed approach does not require the explicit characterization of the wanted sound to be preserved. The controls are designed based on the measurements of the total field on the boundaries of the shielded domain only, which is allowed to be multiply connected. The method is tested in a variety of experimental cases. The typical attenuation of the unwanted noise is found to be about 20 dB over a large area of the shielded domain and the original wanted sound field is preserved with errors of around 1 dB and below through a broad frequency range up to 1 kHz. © 2011 Acoustical Society of Americ

    Transition times in the Landau-Zener model

    Get PDF
    This paper presents analytic formulas for various transition times in the Landau-Zener model. Considerable differences are found between the transition times in the diabatic and adiabatic bases, and between the jump time (the time for which the transition probability rises to the region of its asymptotic value) and the relaxation time (the characteristic damping time of the oscillations which appear in the transition probability after the crossing). These transition times have been calculated by using the exact values of the transition probabilities and their derivatives at the crossing point and approximations to the time evolutions of the transition probabilities in the diabatic basis, derived earlier \protect{[}N. V. Vitanov and B. M. Garraway, Phys. Rev. A {\bf 53}, 4288 (1996)\protect{]}, and similar results in the adiabatic basis, derived in the present paper.Comment: 7 pages, two-column revtex style, 5 figures, to appear in Phys. Rev. A (Feb 1999

    Role of Exogenous Proline in Ameliorating Salt Stress at Early Stage in Two Rice Cultivars

    Get PDF
    The study evaluated the effect of proline on germination and seedling growth of two Malaysian rice cultivars (MR220 and MR232) under salt stress. The exposure of rice seeds to increasing concentration of NaCl (0, 100, 200, 300 and 400 mM) had drastically affected germination (%), root and shoot length (mm), chlorophyll content and protein content. It is evident from the result of inhibition in germination rate, reduction in root and shoot length, chlorophyll content and protein content. However, several studies have shown that exogenous application of proline has ameliorated the negative effect of salt stress by regulating cellular osmotic balance. The present study has demonstrated that rice seeds pretreated with proline (1mM, 5mM and 10mM) and grown at different NaCl concentrations counteracted the adverse effect of salt. Pretreatment of proline at a concentration of 1mM was found to be effective and stimulated cellular activities, whereas 10mM proline was ineffective in improving plant growth under high level of salt (300 and 400mM NaCl)

    Sistem Pengenalan Plat Nomor Mobil Dengan Metode Principal Components Analysis

    Full text link
    The paper describes a vehicle plate recognition system based on computer vision technique. The vehicle image/video was taken from a digital camera and then the vehicle plate automatically identified, segmented and recognized by the system. The feature reduction technique of Principal Components Analysis (PCA) was used in the system. This application was built using Microsoft Visual C++ 6.0Ÿ, MicrosoftŸ DirectShowŸ, IntelŸ Image Processing Library and Open Source Computer Vision (OpenCV) Library. The application has been implemented and was able to detect vehicle plate position and recognize it using a PC Pentium II/400 MHz. The recognition rate of ±82% was achieved based on recognition of hundreds alphanumeric images (alphanumeric A-Z, 0-9). This sistem is prospective enough to be used for control and security system in parking area

    Theory of the propagation of coupled waves in arbitrarily-inhomogeneous stratified media

    Full text link
    We generalize the invariant imbedding theory of the wave propagation and derive new invariant imbedding equations for the propagation of arbitrary number of coupled waves of any kind in arbitrarily-inhomogeneous stratified media, where the wave equations are effectively one-dimensional. By doing this, we transform the original boundary value problem of coupled second-order differential equations to an initial value problem of coupled first-order differential equations, which makes the numerical solution of the coupled wave equations much easier. Using the invariant imbedding equations, we are able to calculate the matrix reflection and transmission coefficients and the wave amplitudes inside the inhomogeneous media exactly and efficiently. We establish the validity and the usefulness of our results by applying them to the propagation of circularly-polarized electromagnetic waves in one-dimensional photonic crystals made of isotropic chiral media. We find that there are three kinds of bandgaps in these structures and clarify the nature of these bandgaps by exact calculations.Comment: 7 pages, 1 figure, to appear in Europhys. Let

    Magnetophoretic circuits for digital control of single particles and cells.

    Get PDF
    The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects

    Kaluza-Klein Pistons with non-Commutative Extra Dimensions

    Full text link
    We calculate the scalar Casimir energy and Casimir force for a R3×NR^3\times N Kaluza-Klein piston setup in which the extra dimensional space NN contains a non-commutative 2-sphere, SFZS_{FZ}. The cases to be studied are Td×SFZT^d\times S_{FZ} and SFZS_{FZ} respectively as extra dimensional spaces, with TdT^d the dd dimensional commutative torus. The validity of the results and the regularization that the piston setup offers are examined in both cases. Finally we examine the 1-loop corrected Casimir energy for one piston chamber, due to the self interacting scalar field in the non-commutative geometry. The computation is done within some approximations. We compare this case for the same calculation done in Minkowski spacetime MDM^D. A discussion on the stabilization of the extra dimensional space within the piston setup follows at the end of the article.Comment: 22 page

    Herschel-SPIRE-Fourier Transform Spectroscopy of the nearby spiral galaxy IC342

    Full text link
    We present observations of the nearby spiral galaxy IC342 with the Herschel Spectral and Photometric Imaging Receiver (SPIRE) Fourier Transform Spectrometer. The spectral range afforded by SPIRE, 196-671 microns, allows us to access a number of 12CO lines from J=4--3 to J=13--12 with the highest J transitions observed for the first time. In addition we present measurements of 13CO, [CI] and [NII]. We use a radiative transfer code coupled with Bayesian likelihood analysis to model and constrain the temperature, density and column density of the gas. We find two 12CO components, one at 35 K and one at 400 K with CO column densities of 6.3x10^{17} cm^{-2} and 0.4x10^{17} cm^{-2} and CO gas masses of 1.26x10^{7} Msolar and 0.15x10^{7} Msolar, for the cold and warm components, respectively. The inclusion of the high-J 12CO line observations, indicate the existence of a much warmer gas component (~400 K) confirming earlier findings from H_{2} rotational line analysis from ISO and Spitzer. The mass of the warm gas is 10% of the cold gas, but it likely dominates the CO luminosity. In addition, we detect strong emission from [NII] 205microns and the {3}P_{1}->{3}P_{0} and {3}P_{2} ->{3}P_{1} [CI] lines at 370 and 608 microns, respectively. The measured 12CO line ratios can be explained by Photon-dominated region (PDR) models although additional heating by e.g. cosmic rays cannot be excluded. The measured [CI] line ratio together with the derived [C] column density of 2.1x10^{17} cm^{-2} and the fact that [CI] is weaker than CO emission in IC342 suggests that [CI] likely arises in a thin layer on the outside of the CO emitting molecular clouds consistent with PDRs playing an important role.Comment: 9 pages, 8 figures, accepted for publication in Monthly Notices of the Royal Astronomical Society (MNRAS
    • 

    corecore