8,261 research outputs found

    Nuclear dipole polarizability from mean-field modeling constrained by chiral effective field theory

    Full text link
    We construct a new Skyrme interaction Skχ\chim∗^* by fitting the equation of state and nucleon effective masses in asymmetric nuclear matter from chiral two- and three-body forces as well as the binding energies of finite nuclei. Employing this interaction to study the electric dipole polarizabilities of 48^{48}Ca, 68^{68}Ni, 120^{120}Sn, and 208^{208}Pb in the random-phase approximation, we find that the theoretical predictions are in good agreement with experimentally measured values without additional fine tuning of the Skyrme interaction, thus confirming the usefulness of the new Skyrme interaction in studying the properties of nuclei. We further use this interaction to study the neutron skin thicknesses of 48^{48}Ca and 208^{208}Pb, and they are found to be consistent with the experimental data.Comment: Significantly revised, 7 pages, 4 figures. Published version in PL

    TILDE-Q: A Transformation Invariant Loss Function for Time-Series Forecasting

    Full text link
    Time-series forecasting has caught increasing attention in the AI research field due to its importance in solving real-world problems across different domains, such as energy, weather, traffic, and economy. As shown in various types of data, it has been a must-see issue to deal with drastic changes, temporal patterns, and shapes in sequential data that previous models are weak in prediction. This is because most cases in time-series forecasting aim to minimize LpL_p norm distances as loss functions, such as mean absolute error (MAE) or mean square error (MSE). These loss functions are vulnerable to not only considering temporal dynamics modeling but also capturing the shape of signals. In addition, these functions often make models misbehave and return uncorrelated results to the original time-series. To become an effective loss function, it has to be invariant to the set of distortions between two time-series data instead of just comparing exact values. In this paper, we propose a novel loss function, called TILDE-Q (Transformation Invariant Loss function with Distance EQuilibrium), that not only considers the distortions in amplitude and phase but also allows models to capture the shape of time-series sequences. In addition, TILDE-Q supports modeling periodic and non-periodic temporal dynamics at the same time. We evaluate the effectiveness of TILDE-Q by conducting extensive experiments with respect to periodic and non-periodic conditions of data, from naive models to state-of-the-art models. The experiment results indicate that the models trained with TILDE-Q outperform those trained with other training metrics (e.g., MSE, dynamic time warping (DTW), temporal distortion index (TDI), and longest common subsequence (LCSS)).Comment: 9 pages paper, 2 pages references, and 7 pages appendix. Submitted as conference paper to ICLR 202

    Potential and Technological Advancement of Biofuels

    Get PDF
    This scientific paper examines the feasibility of biofuels as a solution to the world‟s energy crisis. It studies the development of the four different generations of biofuel that have been discerned over the years, determining the pros and cons of each. The paper further investigates the issues concerning each generation, and determines how their successors have solved and improved on those problems. In order to give the reader an unbiased perspective, the paper studies both general advantages and disadvantages that encompasses social, economic and environmental impacts. Research and development on the first two generations of biofuels have matured, and case studies have been used to allude to their current applications. The challenge of making third and fourth generation biofuels economically viable has also been highlighted due to their significant environmental and production benefits over the first two generations. The prospects of third and fourth generation biofuels have also been looked into to determine its outlook in the near future. If these next generation biofuels can garner enough support and become cost-competitive, mankind‟s quest for an alternative, renewable source of energy may finally be completed

    Discrepancy in Determination of Chi Parameters by Melting Point Depression Versus Small-Angle Neutron Scattering in Blends of Deuterated Polycarbonate and Isotactic Poly(Methyl Methacrylate)

    Get PDF
    The discrepancy in the chi interaction parameters of deuterated polycarbonate/isotactic poly(methyl methacrylate) blends as determined by the melting point depression approach and the small-angle scattering technique is reported. We have modified the Flory diluent theory by removing the inherent assumption of complete rejection of the solvent from the crystal solid by taking into consideration the crystal-amorphous, amorphous-crystal, and crystal-crystal interactions. The discrepancy in chi values obtained by the two methods is discussed

    SSumM: Sparse Summarization of Massive Graphs

    Full text link
    Given a graph G and the desired size k in bits, how can we summarize G within k bits, while minimizing the information loss? Large-scale graphs have become omnipresent, posing considerable computational challenges. Analyzing such large graphs can be fast and easy if they are compressed sufficiently to fit in main memory or even cache. Graph summarization, which yields a coarse-grained summary graph with merged nodes, stands out with several advantages among graph compression techniques. Thus, a number of algorithms have been developed for obtaining a concise summary graph with little information loss or equivalently small reconstruction error. However, the existing methods focus solely on reducing the number of nodes, and they often yield dense summary graphs, failing to achieve better compression rates. Moreover, due to their limited scalability, they can be applied only to moderate-size graphs. In this work, we propose SSumM, a scalable and effective graph-summarization algorithm that yields a sparse summary graph. SSumM not only merges nodes together but also sparsifies the summary graph, and the two strategies are carefully balanced based on the minimum description length principle. Compared with state-of-the-art competitors, SSumM is (a) Concise: yields up to 11.2X smaller summary graphs with similar reconstruction error, (b) Accurate: achieves up to 4.2X smaller reconstruction error with similarly concise outputs, and (c) Scalable: summarizes 26X larger graphs while exhibiting linear scalability. We validate these advantages through extensive experiments on 10 real-world graphs.Comment: to be published in the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '20

    To the Edge of M87 and Beyond: Spectroscopy of Intracluster Globular Clusters and Ultra Compact Dwarfs in the Virgo Cluster

    Full text link
    We present the results from a wide-field spectroscopic survey of globular clusters (GCs) in the Virgo Cluster. We obtain spectra for 201 GCs and 55 ultracompact dwarfs (UCDs) using the Hectospec on the Multiple Mirror Telescope, and derive their radial velocities. We identify 46 genuine intracluster GCs (IGCs), not associated with any Virgo galaxies, using the 3D GMM test on the spatial and radial velocity distribution.They are located at the projected distance 200 kpc ≲\lesssim R ≲\lesssim 500 kpc from the center of M87. The radial velocity distribution of these IGCs shows two peaks, one at vrv_{\rm r} = 1023 km s−1^{-1} associated with the Virgo main body, and another at vrv_{\rm r} = 36 km s−1^{-1} associated with the infalling structure. The velocity dispersion of the IGCs in the Virgo main body is σGC∼\sigma_{\rm{GC}} \sim 314 km s−1^{-1}, which is smoothly connected to the velocity dispersion profile of M87 GCs, but much lower than that of dwarf galaxies in the same survey field, σdwarf∼\sigma_{\rm{dwarf}} \sim 608 km s−1^{-1}. The UCDs are more centrally concentrated on massive galaxies, M87, M86, and M84. The radial velocity dispersion of the UCD system is much smaller than that of dwarf galaxies. Our results confirm the large-scale distribution of Virgo IGCs indicated by previous photometric surveys. The color distribution of the confirmed IGCs shows a bimodality similar to that of M87 GCs. This indicates that most IGCs are stripped off from dwarf galaxies and some from massive galaxies in the Virgo.Comment: 19 pages, 20 figures, 8 tables, accepted for publication in Ap
    • …
    corecore