research

Nuclear dipole polarizability from mean-field modeling constrained by chiral effective field theory

Abstract

We construct a new Skyrme interaction Skχ\chim^* by fitting the equation of state and nucleon effective masses in asymmetric nuclear matter from chiral two- and three-body forces as well as the binding energies of finite nuclei. Employing this interaction to study the electric dipole polarizabilities of 48^{48}Ca, 68^{68}Ni, 120^{120}Sn, and 208^{208}Pb in the random-phase approximation, we find that the theoretical predictions are in good agreement with experimentally measured values without additional fine tuning of the Skyrme interaction, thus confirming the usefulness of the new Skyrme interaction in studying the properties of nuclei. We further use this interaction to study the neutron skin thicknesses of 48^{48}Ca and 208^{208}Pb, and they are found to be consistent with the experimental data.Comment: Significantly revised, 7 pages, 4 figures. Published version in PL

    Similar works

    Full text

    thumbnail-image