40 research outputs found

    Zeliha’nın hikâyesi

    Get PDF
    Emin Lami'nin Yeni Gazete'de tefrika edilen Zeliha’nın Hikâyesi adlı romanıTefrikanın devamına rastlanmamış, tefrika yarım kalmıştır

    Effective gamma-ray sterilization and characterization of conductive polypyrrole biomaterials

    Get PDF
    Conductive polymers, including polypyrrole (PPy), have been extensively explored to fabricate electrically conductive biomaterials for bioelectrodes and tissue engineering scaffolds. For their in vivo uses, a sterilization method without severe impairment of original material properties and performance is necessary. Gamma-ray radiation has been commonly applied for sterilization of medical products because of its simple and uniform sterilization without heat generation. Herein we describe the first study on gamma-ray sterilization of PPy bioelectrodes and its effects on their characteristics. We irradiated PPy bioelectrodes with different doses (0–75 kGy) of gamma-rays. Gamma-ray irradiation of the PPy (γ-PPy) increased the oxygenation and hydrophilicity of the surfaces. Interestingly, gamma-ray irradiation did not alter the electrical impedances and conductivities of the PPy substrates. Additionally, γ-PPy prepared with various dopants (e.g., para-toluene sulfonate, polystyrene sulfonate, and chlorine) showed the electrochemical properties similar to the non-irradiated control. Gamma-ray irradiation at doses of ≥15 kGy was required for effective sterilization as evidenced by complete eradication of gram positive and negative bacteria. γ-PPy substrates also showed cytocompatibility similar to untreated control PPy, indicating no substantial alteration of cytocompatibility. In conclusion, gamma ray sterilization is a viable method of sterilization of conducting polymer-based biomaterials for biomedical applications

    Construction of 3-D cellular multi-layers with extracellular matrix assembly using magnatic nanoparticles

    Get PDF
    Construction of 3-dimensional (3-D) engineered tissue is increasingly being investigated for use in drug discovery and regenerative medicine. Here, we developed multi-layered 3-D cellular assembly by using magnetic nanoparticles (MNP) isolated from Magnetospirillum sp. AMB-1 magnetotactic bacteria. Magnetized human dermal fibroblasts (HDFBs) were prepared by treatment with the MNP, induced to form 3-D assembly under a magnetic field. Analyses including LIVE/DEAD assay, transmission electron microscopy revealed that the MNP were internalized via clathrin-mediated endocytosis without cytotoxicity. The magnetized HDFBs could build 3-D structure as a function of seeding density. When the highest seeding density (5 × 105 cells/mm2 was used, the thickness of assembly was 4190 ± 169 μm, with approximately 93±16 cell layers being formed. Immunofluorescence staining confirmed homogeneous distribution of ECM and junction proteins throughout the 3-D assembly. Real-time PCR analysis showed decrease in expression levels of collagen types I and IV but increase in that of connexin 43 in the 3-D assembly compared with the 2-D culture. Finally, we demonstrated that the discernible layers can be formed hierarchically by serial assembly. In conclusion, our study showed that a multi-layered structure can be easily prepared using magnetically-assisted cellular assembly with highlighting cell-cell and cell-ECM communication.OAIID:RECH_ACHV_DSTSH_NO:T201623722RECH_ACHV_FG:RR00200001ADJUST_YN:EMP_ID:A002014CITE_RATE:3.929FILENAME:7. (2016.10) Construction of 3-D Cellular Multi-Layers with.pdfDEPT_NM:화학생물공학부EMAIL:[email protected]_YN:YFILEURL:https://srnd.snu.ac.kr/eXrepEIR/fws/file/a5981ae9-bf9b-4b44-bd34-9e96bc984798/linkCONFIRM:

    Radiation-Induced Grafting with One-Step Process of Waste Polyurethane onto High-Density Polyethylene

    No full text
    The recycling of waste polyurethane (PU) using radiation-induced grafting was investigated. The grafting of waste PU onto a high-density polyethylene (HDPE) matrix was carried out using a radiation technique with maleic anhydride (MAH). HDPE pellets and PU powders were immersed in a MAH-acetone solution. Finally, the prepared mixtures were irradiated with an electron beam accelerator. The grafted composites were characterized by Fourier transformed infrared spectroscopy (FT-IR), surface morphology, and mechanical properties. To make a good composite, the improvement in compatibility between HDPE and PU is an important factor. Radiation-induced grafting increased interfacial adhesion between the PU domain and the HDPE matrix. When the absorbed dose was 75 kGy, the surface morphology of the irradiated PU/HDPE composite was nearly a smooth and single phase, and the elongation at break increased by approximately three times compared with that of non-irradiated PU/HDPE composite

    Preparation of Poly(acrylic acid) Hydrogel by Radiation Crosslinking and Its Application for Mucoadhesives

    Get PDF
    A mucoadhesive drug delivery system can improve the effectiveness of a drug by maintaining the drug concentration and allowing targeting and localization of the drug at a specific site. Acrylic-based hydrogels have been used extensively as a mucoadhesive system owing to their flexibility and excellent bioadhesion. In this experiment, poly(acrylic acid) was selected to prepare the bioadhesive hydrogel adhering to mucosal surfaces using a radiation process. Poly(acrylic acid) was dissolved in water to a prepare poly(acrylic acid) solution, and the solution was then irradiated by an electron beam at up to 75 kGy to make hydrogels. Their physical properties, such as gel percent, swelling percent and adhesive strength to mucosal surfaces, were investigated. Triamcinolone acetonide was used as a model drug. The dried poly(acrylic acid) film was dipped in a 0.1 wt% triamcinolone acetonide solution in ethanol, and then dried at 25 °C. The release of triamcinolone acetonide was determined at different time intervals, and UV (Ultraviolet)-Vis spectroscopy was used to determine the released concentration of triamcinolone acetonide at 238 nm. It was shown that poly(acrylic acid)-based drug carriers were successfully prepared for use in a bioadhesive drug delivery system

    Development of Styrene-Grafted Polyurethane by Radiation-Based Techniques

    No full text
    Polyurethane (PU) is the fifth most common polymer in the general consumer market, following Polypropylene (PP), Polyethylene (PE), Polyvinyl chloride (PVC), and Polystyrene (PS), and the most common polymer for thermosetting resins. In particular, polyurethane has excellent hardness and heat resistance, is a widely used material for electronic products and automotive parts, and can be used to create products of various physical properties, including rigid and flexible foams, films, and fibers. However, the use of polar polymer polyurethane as an impact modifier of non-polar polymers is limited due to poor combustion resistance and impact resistance. In this study, we used gamma irradiation at 25 and 50 kGy to introduce the styrene of hydrophobic monomer on the polyurethane as an impact modifier of the non-polar polymer. To verify grafted styrene, we confirmed the phenyl group of styrene at 690 cm−1 by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) and at 6.4–6.8 ppm by 1H-Nuclear Magnetic Resonance (1H-NMR). Scanning Electron Microscope (SEM), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric Analysis (TGA) and contact angle analysis were also used to confirm styrene introduction. This study has confirmed the possibility of applying high-functional composite through radiation-based techniques

    Preparation of High Density Polyethylene/Waste Polyurethane Blends Compatibilized with Polyethylene-Graft-Maleic Anhydride by Radiation

    No full text
    Polyurethane (PU) is a very popular polymer that is used in a variety of applications due to its good mechanical, thermal, and chemical properties. However, PU recycling has received significant attention due to environmental issues. In this study, we developed a recycling method for waste PU that utilizes the radiation grafting technique. Grafting of waste PU was carried out using a radiation technique with polyethylene-graft-maleic anhydride (PE-g-MA). The PE-g-MA-grafted PU/high density polyethylene (HDPE) composite was prepared by melt-blending at various concentrations (0–10 phr) of PE-g-MA-grafted PU. The composites were characterized using fourier transform infrared spectroscopy (FT-IR), and their surface morphology and thermal/mechanical properties are reported. For 1 phr PU, the PU could be easily introduced to the HDPE during the melt processing in the blender after the radiation-induced grafting of PU with PE-g-MA. PE-g-MA was easily reacted with PU according to the increasing radiation dose and was located at the interface between the PU and the HDPE during the melt processing in the blender, which improved the interfacial interactions and the mechanical properties of the resultant composites. However, the elongation at break for a PU content >2 phr was drastically decreased
    corecore