54 research outputs found

    Subnanogram proteomics: impact of LC column selection, MS instrumentation and data analysis strategy on proteome coverage for trace samples

    Get PDF
    One of the greatest challenges for mass spectrometry (MS)-based proteomics is the limited ability to analyze small samples. Here we investigate the relative contributions of liquid chromatography (LC), MS instrumentation and data analysis methods with the aim of improving proteome coverage for sample sizes ranging from 0.5 ng to 50 ng. We show that the LC separations utilizing 30-Ī¼m-i.d. columns increase signal intensity by >3-fold relative to those using 75-Ī¼m-i.d. columns, leading to 32% increase in peptide identifications. The Orbitrap Fusion Lumos MS significantly boosted both sensitivity and sequencing speed relative to earlier generation Orbitraps (e.g., LTQ-Orbitrap), leading to a āˆ¼3-fold increase in peptide identifications and 1.7-fold increase in identified protein groups for 2 ng tryptic digests of the bacterium S. oneidensis. The Match Between Runs algorithm of open-source MaxQuant software further increased proteome coverage by āˆ¼ 95% for 0.5 ng samples and by āˆ¼42% for 2 ng samples. Using the best combination of the above variables, we were able to identify >3,000 proteins from 10 ng tryptic digests from both HeLa and THP-1 mammalian cell lines. We also identified >950 proteins from subnanogram archaeal/bacterial cocultures. The present ultrasensitive LC-MS platform achieves a level of proteome coverage not previously realized for ultra-small sample loadings, and is expected to facilitate the analysis of subnanogram samples, including single mammalian cells

    Synergistic use of hyperspectral uv-visible omi and broadband meteorological imager modis data for a merged aerosol product

    Get PDF
    The retrieval of optimal aerosol datasets by the synergistic use of hyperspectral ultraviolet (UV)-visible and broadband meteorological imager (MI) techniques was investigated. The Aura Ozone Monitoring Instrument (OMI) Level 1B (L1B) was used as a proxy for hyperspectral UV-visible instrument data to which the Geostationary Environment Monitoring Spectrometer (GEMS) aerosol algorithm was applied. Moderate-Resolution Imaging Spectroradiometer (MODIS) L1B and dark target aerosol Level 2 (L2) data were used with a broadband MI to take advantage of the consistent time gap between the MODIS and the OMI. First, the use of cloud mask information from the MI infrared (IR) channel was tested for synergy. High-spatial-resolution and IR channels of the MI helped mask cirrus and sub-pixel cloud contamination of GEMS aerosol, as clearly seen in aerosol optical depth (AOD) validation with Aerosol Robotic Network (AERONET) data. Second, dust aerosols were distinguished in the GEMS aerosol-type classification algorithm by calculating the total dust confidence index (TDCI) from MODIS L1B IR channels. Statistical analysis indicates that the Probability of Correct Detection (POCD) between the forward and inversion aerosol dust models (DS) was increased from 72% to 94% by use of the TDCI for GEMS aerosol-type classification, and updated aerosol types were then applied to the GEMS algorithm. Use of the TDCI for DS type classification in the GEMS retrieval procedure gave improved single-scattering albedo (SSA) values for absorbing fine pollution particles (BC) and DS aerosols. Aerosol layer height (ALH) retrieved from GEMS was compared with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data, which provides high-resolution vertical aerosol profile information. The CALIOP ALH was calculated from total attenuated backscatter data at 1064 nm, which is identical to the definition of GEMS ALH. Application of the TDCI value reduced the median bias of GEMS ALH data slightly. The GEMS ALH bias approximates zero, especially for GEMS AOD values of >similar to 0.4 and GEMS SSA values of <similar to 0.95. Finally, the AOD products from the GEMS algorithm and MI were used in aerosol merging with the maximum-likelihood estimation method, based on a weighting factor derived from the standard deviation of the original AOD products. With the advantage of the UV-visible channel in retrieving aerosol properties over bright surfaces, the combined AOD products demonstrated better spatial data availability than the original AOD products, with comparable accuracy. Furthermore, pixel-level error analysis of GEMS AOD data indicates improvement through MI synergy

    Does the bilingual advantage in cognitive control exist and if so, what are its modulating factors? A systematic review

    Get PDF
    Recently, doubts were raised about the existence of the bilingual advantage in cognitive control. The aim of the present review was to investigate the bilingual advantage and its modulating factors. We searched the Medline, ScienceDirect, Scopus, and ERIC databases for all original data and reviewed studies on bilingualism and cognitive control, with a cut-off date of 31 October 2018, thereby following the guidelines of the preferred reporting items for systematic reviews and meta-analysis (PRISMA) protocol. The results of the 46 original studies show that indeed, the majority, 54.3%, reported beneficial effects of bilingualism on cognitive control tasks; however, 28.3% found mixed results and 17.4% found evidence against its existence. Methodological differences seem to explain these mixed results: Particularly, the varying selection of the bilingual participants, the use of nonstandardized tests, and the fact that individual differences were often neglected and that longitudinal designs were rare. Therefore, a serious risk for bias exists in both directions (i.e., in favor of and against the bilingual advantage). To conclude, we found some evidence for a bilingual advantage in cognitive control; however, if significant progress is to be made, better study designs, bigger data, and more longitudinal studies are needed

    Synergistic epistasis enhances cooperativity of mutualistic interspecies interactions

    Get PDF
    Frequent fluctuations in sulfate availability rendered syntrophic interactions between the sulfate reducing bacterium Desulfovibrio vulgaris (Dv) and the methanogenic archaeon Methanococcus maripaludis (Mm) unsustainable. By contrast, prolonged laboratory evolution in obligate syntrophy conditions improved the productivity of this community but at the expense of erosion of sulfate respiration (SR). Hence, we sought to understand the evolutionary trajectories that could both increase the productivity of syntrophic interactions and sustain SR. We combined a temporal and combinatorial survey of mutations accumulated over 1000 generations of 9 independently-evolved communities with analysis of the genotypic structure for one community down to the single-cell level. We discovered a high level of parallelism across communities despite considerable variance in their evolutionary trajectories and the perseverance of a rare SR+ Dv lineage within many evolution lines. An in-depth investigation revealed that synergistic epistasis across Dv and Mm genotypes had enhanced cooperativity within SR- and SR+ assemblages, allowing their co-existence as r- and K-strategists, respectively

    Synergistic epistasis enhances the co-operativity of mutualistic interspecies interactions

    Get PDF
    Early evolution of mutualism is characterized by big and predictable adaptive changes, including the specialization of interacting partners, such as through deleterious mutations in genes not required for metabolic cross-feeding. We sought to investigate whether these early mutations improve cooperativity by manifesting in synergistic epistasis between genomes of the mutually interacting species. Specifically, we have characterized evolutionary trajectories of syntrophic interactions of Desulfovibrio vulgaris (Dv) with Methanococcus maripaludis (Mm) by longitudinally monitoring mutations accumulated over 1000 generations of nine independently evolved communities with analysis of the genotypic structure of one community down to the single-cell level. We discovered extensive parallelism across communities despite considerable variance in their evolutionary trajectories and the perseverance within many evolution lines of a rare lineage of Dv that retained sulfate-respiration (SR+) capability, which is not required for metabolic cross-feeding. An in-depth investigation revealed that synergistic epistasis across pairings of Dv and Mm genotypes had enhanced cooperativity within SRāˆ’ and SR+ assemblages, enabling their coexistence within the same community. Thus, our findings demonstrate that cooperativity of a mutualism can improve through synergistic epistasis between genomes of the interacting species, enabling the coexistence of mutualistic assemblages of generalists and their specialized variants

    Subnanogram proteomics: impact of LC column selection, MS instrumentation and data analysis strategy on proteome coverage for trace samples

    Get PDF
    One of the greatest challenges for mass spectrometry (MS)-based proteomics is the limited ability to analyze small samples. Here we investigate the relative contributions of liquid chromatography (LC), MS instrumentation and data analysis methods with the aim of improving proteome coverage for sample sizes ranging from 0.5 ng to 50 ng. We show that the LC separations utilizing 30-Ī¼m-i.d. columns increase signal intensity by >3-fold relative to those using 75-Ī¼m-i.d. columns, leading to 32% increase in peptide identifications. The Orbitrap Fusion Lumos MS significantly boosted both sensitivity and sequencing speed relative to earlier generation Orbitraps (e.g., LTQ-Orbitrap), leading to a āˆ¼3-fold increase in peptide identifications and 1.7-fold increase in identified protein groups for 2 ng tryptic digests of the bacterium S. oneidensis. The Match Between Runs algorithm of open-source MaxQuant software further increased proteome coverage by āˆ¼ 95% for 0.5 ng samples and by āˆ¼42% for 2 ng samples. Using the best combination of the above variables, we were able to identify >3,000 proteins from 10 ng tryptic digests from both HeLa and THP-1 mammalian cell lines. We also identified >950 proteins from subnanogram archaeal/bacterial cocultures. The present ultrasensitive LC-MS platform achieves a level of proteome coverage not previously realized for ultra-small sample loadings, and is expected to facilitate the analysis of subnanogram samples, including single mammalian cells

    A systematic review on the possible relationship between bilingualism, cognitive decline, and the onset of dementia

    Get PDF
    A systematic review was conducted to investigate whether bilingualism has a protective effect against cognitive decline in aging and can protect against dementia. We searched the Medline, ScienceDirect, Scopus, and ERIC databases with a cut-off date of 31 March 2019, thereby following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) protocol. Our search resulted in 34 eligible studies. Mixed results were found with respect to the protective effect of bilingualism against cognitive decline. Several studies showed a protective effect whereas other studies failed to find it. Moreover, evidence for a delay of the onset of dementia of between 4 and 5.5 years in bilingual individuals compared to monolinguals was found in several studies, but not in all. Methodological differences in the set-up of the studies seem to explain these mixed results. Lifelong bilingualism is a complex individual process, and many factors seem to influence this and need to be further investigated. This can be best achieved through large longitudinal studies with objective behavioral and neuroimaging measurements. In conclusion, although some evidence was found for a cognitive reserve-enhancing effect of lifelong bilingualism and protection against dementia, to date, no firm conclusions can be drawn
    • ā€¦
    corecore