21 research outputs found

    Evolutionary trend toward kinetic stability in the folding trajectory of RNases H

    No full text
    Proper folding of proteins is critical to producing the biological machinery essential for cellular function. The rates and energetics of a protein’s folding process, which is described by its energy landscape, are encoded in the amino acid sequence. Over the course of evolution, this landscape must be maintained such that the protein folds and remains folded over a biologically relevant time scale. How exactly a protein’s energy landscape is maintained or altered throughout evolution is unclear. To study how a protein’s energy landscape changed over time, we characterized the folding trajectories of ancestral proteins of the ribonuclease H (RNase H) family using ancestral sequence reconstruction to access the evolutionary history between RNases H from mesophilic and thermophilic bacteria. We found that despite large sequence divergence, the overall folding pathway is conserved over billions of years of evolution. There are robust trends in the rates of protein folding and unfolding; both modern RNases H evolved to be more kinetically stable than their most recent common ancestor. Finally, our study demonstrates how a partially folded intermediate provides a readily adaptable folding landscape by allowing the independent tuning of kinetics and thermodynamics

    The thermostability and specificity of ancient proteins

    No full text
    Were ancient proteins systematically different than modern proteins? The answer to this question is profoundly important, shaping how we understand the origins of protein biochemical, biophysical, and functional properties. Ancestral sequence reconstruction (ASR), a phylogenetic approach to infer the sequences of ancestral proteins, may reveal such trends. We discuss two proposed trends: a transition from higher to lower thermostability and a tendency for proteins to acquire higher specificity over time. We review the evidence for elevated ancestral thermostability and discuss its possible origins in a changing environmental temperature and/or reconstruction bias. We also conclude that there is, as yet, insufficient data to support a trend from promiscuity to specificity. Finally, we propose future work to understand these proposed evolutionary trends

    Visualizing Attack of <i>Escherichia coli</i> by the Antimicrobial Peptide Human Defensin 5

    No full text
    Human α-defensin 5 (HD5) is a 32-residue cysteine-rich host-defense peptide that exhibits broad-spectrum antimicrobial activity and contributes to innate immunity in the human gut and other organ systems. Despite many years of investigation, its antimicrobial mechanism of action remains unclear. In this work, we report that HD5<sub>ox</sub>, the oxidized form of this peptide that exhibits three regiospecific disulfide bonds, causes distinct morphological changes to <i>Escherichia coli</i> and other Gram-negative microbes. These morphologies include bleb formation, cellular elongation, and clumping. The blebs are up to ∼1 μm wide and typically form at the site of cell division or cell poles. Studies with <i>E. coli</i> expressing cytoplasmic GFP reveal that HD5<sub>ox</sub> treatment causes GFP emission to localize in the bleb. To probe the cellular uptake of HD5<sub>ox</sub> and subsequent localization, we describe the design and characterization of a fluorophore–HD5 conjugate family. By employing these peptides, we demonstrate that fluorophore–HD5<sub>ox</sub> conjugates harboring the rhodamine and coumarin fluorophores enter the <i>E. coli</i> cytoplasm. On the basis of the fluorescence profiles, each of these fluorophore–HD5<sub>ox</sub> conjugates localizes to the site of cell division and cell poles. These studies support the notion that HD5<sub>ox</sub>, at least in part, exerts its antibacterial activity against <i>E. coli</i> and other Gram-negative microbes in the cytoplasm

    Competitive SARS-CoV-2 Serology Reveals Most Antibodies Targeting the Spike Receptor-Binding Domain Compete for ACE2 Binding.

    No full text
    As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread around the world, there is an urgent need for new assay formats to characterize the humoral response to infection. Here, we present an efficient, competitive serological assay that can simultaneously determine an individual's seroreactivity against the SARS-CoV-2 Spike protein and determine the proportion of anti-Spike antibodies that block interaction with the human angiotensin-converting enzyme 2 (ACE2) required for viral entry. In this approach based on the use of enzyme-linked immunosorbent assays (ELISA), we present natively folded viral Spike protein receptor-binding domain (RBD)-containing antigens via avidin-biotin interactions. Sera are then competed with soluble ACE2-Fc, or with a higher-affinity variant thereof, to determine the proportion of ACE2 blocking anti-RBD antibodies. Assessment of sera from 144 SARS-CoV-2 patients ultimately revealed that a remarkably consistent and high proportion of antibodies in the anti-RBD pool targeted the epitope responsible for ACE2 engagement (83% ± 11%; 50% to 107% signal inhibition in our largest cohort), further underscoring the importance of tailoring vaccines to promote the development of such antibodies.IMPORTANCE With the emergence and continued spread of the SARS-CoV-2 virus, and of the associated disease, coronavirus disease 2019 (COVID-19), there is an urgent need for improved understanding of how the body mounts an immune response to the virus. Here, we developed a competitive SARS-CoV-2 serological assay that can simultaneously determine whether an individual has developed antibodies against the SARS-CoV-2 Spike protein receptor-binding domain (RBD) and measure the proportion of these antibodies that block interaction with the human angiotensin-converting enzyme 2 (ACE2) required for viral entry. Using this assay and 144 SARS-CoV-2 patient serum samples, we found that a majority of anti-RBD antibodies compete for ACE2 binding. These results not only highlight the need to design vaccines to generate such blocking antibodies but also demonstrate the utility of this assay to rapidly screen patient sera for potentially neutralizing antibodies

    Targeting a proteolytic neoepitope on CUB domain containing protein 1 (CDCP1) for RAS-driven cancers.

    No full text
    Extracellular proteolysis is frequently dysregulated in disease and can generate proteoforms with unique neoepitopes not found in healthy tissue. Here, we demonstrate that Abs that selectively recognize a proteolytic neoepitope on CUB domain containing protein 1 (CDCP1) could enable more effective and safer treatments for solid tumors. CDCP1 is highly overexpressed in RAS-driven cancers, and its ectodomain is cleaved by extracellular proteases. Biochemical, biophysical, and structural characterization revealed that the 2 cleaved fragments of CDCP1 remain tightly associated with minimal proteolysis-induced conformational change. Using differential phage display, we generated recombinant Abs that are exquisitely selective to cleaved CDCP1 with no detectable binding to the uncleaved form. These Abs potently targeted cleaved CDCP1-expressing cancer cells as an Ab-drug conjugate, an Ab-radionuclide conjugate, and a bispecific T cell engager. In a syngeneic pancreatic tumor model, these cleaved-specific Abs showed tumor-specific localization and antitumor activity with superior safety profiles compared with a pan-CDCP1 approach. Targeting proteolytic neoepitopes could provide an orthogonal "AND" gate for improving the therapeutic index
    corecore