16 research outputs found

    The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting

    No full text
    We report the discovery of a new class of oxides - poly-cation oxides (PCOs) - that consist of multiple cations and can thermochemically split water in a two-step cycle to produce hydrogen (H-2) and oxygen (O-2). Specifically, we demonstrate H-2 yields of 10.1 +/- 0.5 mL-H-2 per g and 1.4 +/- 0.5 mL-H-2 per g from (FeMgCoNi)O-x (x approximate to 1.2) with thermal reduction temperatures of 1300 degrees C and 1100 degrees C, respectively, and also with background H-2 during the water splitting step. Remarkably, these capacities are mostly higher than those from measurements and thermodynamic analysis of state-of-the-art materials such as (substituted) ceria and spinel ferrites. Such high-performance two-step cycles 1100 degrees C are practically relevant for today's chemical infrastructure at large scale, which relies almost exclusively on thermochemical transformations in this temperature regime. It is likely that PCOs with complex cation compositions will offer new opportunities for both fundamental investigations of redox thermochemistry as well as scalable H-2 production using infrastructure-compatible chemical systems.113sciescopu

    Substantial Oxygen Loss and Chemical Expansion in Lithium-Rich Layered Oxides at Moderate Delithiation

    No full text
    Delithiation of layered oxide electrodes triggers irreversible oxygen loss, one of the primary degradation modes in lithium-ion batteries. However, the delithiation-dependent mechanisms of oxygen loss remain poorly understood. Here, we investigate the oxygen nonstoichiometry in Li- and Mn-rich Li1.18-xNi0.21Mn0.53Co0.08O2-δ electrodes as a function of Li content by utilizing cycling protocols with long open-circuit voltage steps at varying states of charge. Surprisingly, we observe significant oxygen loss even at moderate delithiation, corresponding to 2.5, 4.0 and 7.6 mL O2 g-1 after resting at 135, 200, and 265 mAh g-1 (relative to the pristine material) for 100 h. Our observations suggest an intrinsic oxygen instability consistent with predictions of high equilibrium oxygen activity at intermediate potentials. From a mechanistic viewpoint, we show that cation disorder greatly lowers the oxygen vacancy formation energy by decreasing the coordination number of transition metals to certain oxygen ions. In addition, we observe a large chemical expansion coefficient with respect to oxygen nonstoichiometry, which is about three times greater than those of classical oxygen-deficient materials such as fluorite and perovskite oxides. Our work challenges the conventional wisdom that deep delithiation is a necessary condition for oxygen loss in layered oxide electrodes and highlights the importance of calendar aging for investigating oxygen stability

    Calcination Heterogeneity in Li-rich Layered Oxides: a Systematic Study of Li2CO3 Particle Size

    No full text
    Li- and Mn-rich (LMR) layered oxide positive electrode materials exhibit high energy density and have earth abundant compositions relative to conventional Ni-, Mn-, and Co-oxides (NMCs). The lithiation of coprecipitated precursors is a key part of synthesis and offers opportunities for tuning the properties of LMR materials. Whereas the morphology of transition metal precursors has received substantial attention, that of Li sources has not. Using Li1.14Mn0.57Ni0.29O2 as a model system, in this work we establish a detailed understanding of LMR calcination pathways via in situ and ex situ diffraction, spectroscopy, microscopy and thermogravimetry. Our work shows that large Li2CO3 particle size modulates a previously misunderstood thermogravimetric feature present at the Li2CO3 melting point during layered oxide calcination and causes heterogeneity at larger length scales (inter-secondary particle) than previously reported (intra secondary particle). This work highlights the sensitivity of layered oxide calcination pathways to synthesis conditions and suggests design rules to minimize calcination heterogeneity in layered oxides beyond LMR

    Thermodynamic guiding principles of high-capacity phase transformation materials for splitting H2O and CO2 by thermochemical looping

    No full text
    Thermochemical looping splitting of water and carbon dioxide (CO2) with greenhouse-gas-free (GHG-free) energy has the potential to help address the Gt-scale GHG emissions challenge. Reaction thermodynamics largely contributes to the main bottlenecks of cost reduction for thermochemical looping water/CO2 splitting cycle. Here, we analyze thermodynamic driving forces in such cycles with two-phase ternary ferrites as model systems. We find that cation configurational entropy chiefly determines the change of partial molar entropy with oxygen stoichiometry. In addition, our phase diagram analysis accurately predicts the optimal Fe ratio for maximal water/CO2 splitting capacity in thermal reduction and in chemical reduction based cycles, underlining the significance of phase boundary positions. With chemical reduction, >10% CO2 conversion and high oxygen exchange capacity can both be achieved. Furthermore, our reduced Gibbs free energy model illustrates critical thermodynamic factors that influence the water/CO2 splitting capacity. Our research reveals the thermodynamic driving forces underlying the unconventional high-capacity Fe-poor ferrites, further explained via phase diagrams of Fe-Co-O, Fe-Ni-O and Fe-Mg-O. Future materials improvements can be guided by our reduced Gibbs free energy model.N

    Selective Incorporation of Colloidal Nanocrystals in Nanopatterned SiO2 Layer for Nanocrystal Memory Device

    No full text
    CdSe colloidal nanocrystals with a size of similar to 5 nm were selectively incorporated in SiO2 nanopatterns formed by a self-assembled diblock copolymer patterning through a simple dip-coating process. The selective incorporation was achieved by capillary force, which drives the nanocrystals into the patterns during solvent evaporation in dip-coating. The capacitor structures of an Al-gate/atomic layer deposition-Al2O3 (27 nm)/CdSe (5 nm)/patterned SiO2 (25 nm)/p-Si substrate were fabricated to characterize the charging/discharging behavior for a memory device. The flatband voltage shift was observed by a charge transport between the gate and the nanocrystals. It demonstrates the colloidal nanocrystal application to a memory device through selective incorporation in regularly ordered nanopatterns by a simple dip-coating process

    Beyond Constant Current: Origin of Pulse-Induced Activation in Phase-Transforming Battery Electrodes

    No full text
    Mechanistic understanding of phase transformation dynamics during battery charging and discharging is crucial toward rationally improving intercalation electrodes. Most studies focus on constant-current conditions. However, in real battery operation, such as in electric vehicles during discharge, the current is rarely constant. In this work we study current pulsing in LiXFePO4 (LFP), a model and technologically important phase-transforming electrode. A current-pulse activation effect has been observed in LFP, which decreases the overpotential by up to ∼70% after a short, high-rate pulse. This effect persists for hours or even days. Using scanning transmission X-ray microscopy and operando X-ray diffraction, we link this long-lived activation effect to a pulse-induced electrode homogenization on both the intra- and interparticle length scales, i.e., within and between particles. Many-particle phase-field simulations explain how such pulse-induced homogeneity contributes to the decreased electrode overpotential. Specifically, we correlate the extent and duration of this activation to lithium surface diffusivity and the magnitude of the current pulse. This work directly links the transient electrode-level electrochemistry to the underlying phase transformation and explains the critical effect of current pulses on phase separation, with significant implication on both battery round-trip efficiency and cycle life. More broadly, the mechanisms revealed here likely extend to other phase-separating electrodes, such as graphite
    corecore