19 research outputs found

    A study of the anti-inflammatory effects of the ethyl acetate fraction of the methanol extract of Forsythiae fructus

    Get PDF
    Background: The dried fruit of Forsythia suspensa (Thunb.) Vahl. (Oleaceae) are better known by their herbal name Forsythiae Fructus, and have a bitter taste, slightly pungent smell, and cold habit. FF has been widely used to treat symptoms associated with the lung, heart, and small intestine. Recently, bioactive compounds isolated from hydrophobic solvent fractions of FF have been reported to have anti-oxidant, anti-bacterial, and anti-cancer effects. Traditionally, almost all herbal medicines are water extracts, and thus, extraction methods should be developed to optimize the practical efficacies of herbal medicines.Materials and Methods: In this study, the anti-inflammatory effects of the ethyl acetate fraction of the methanol extract of FF (FFE) were assessed by measuring NO and PGE2 production by and intracellular ROS and protein levels of iNOS and COX-2 in RAW 264.7 cells.Results: FFE inhibited COX-2 expression in LPS-stimulated RAW 264.7 cells.Conclusion: In summary, FFE effectively reduced intracellular ROS and NO levels and inhibited PGE2 production by downregulating COX-2 levels.Keywords: Forsythiae Fructus, herb, inflammation, efficacy

    A STUDY OF THE ANTI-INFLAMMATORY EFFECTS OF THE ETHYL ACETATE FRACTION OF THE METHANOL EXTRACT OF FORSYTHIAE FRUCTUS

    Get PDF
    Background: The dried fruit of Forsythia suspensa (Thunb.) Vahl. (Oleaceae) are better known by their herbal name Forsythiae Fructus, and have a bitter taste, slightly pungent smell, and cold habit. FF has been widely used to treat symptoms associated with the lung, heart, and small intestine. Recently, bioactive compounds isolated from hydrophobic solvent fractions of FF have been reported to have anti-oxidant, anti-bacterial, and anti-cancer effects. Traditionally, almost all herbal medicines are water extracts, and thus, extraction methods should be developed to optimize the practical efficacies of herbal medicines. Materials and Methods: In this study, the anti-inflammatory effects of the ethyl acetate fraction of the methanol extract of FF (FFE) were assessed by measuring NO and PGE2 production byand intracellular ROS and protein levels of iNOS and COX-2in RAW 264.7 cells. Results: FFE inhibited COX-2 expression in LPS-stimulated RAW 264.7 cells. Conclusion: In summary, FFE effectively reduced intracellular ROS and NO levels and inhibited PGE2 production by down- regulating COX-2 levels

    EFFECTS OF GLYCYRRHIZIN PRE-TREATMENT ON TRANSIENT ISCHEMIC BRAIN INJURY IN MICE

    Get PDF
    Background: Ischemia-induced brain damage is the leading cause of adult disability and the fifth leading cause of death, and thus, the development of anti-apoptotic neuro-protective therapeutic agents is viewed as an attractive developmental strategy. Glycyrrhizin is the main sweet component in licorice and has a number of pharmacological activities, which include neuro-protective, anti-fungal, and anti-cariogenic activities. This study was undertaken to investigate the effects of glycyrrhizin on ischemia-induced brain damage. Materials and Methods: In infarct volumes and the levels of several apoptosis-related proteins, caspase-3, - 8, 9, Bcl-xL, Bcl-2,and their activities in the brains of middle cerebral artery occlusion (MCAO) treated mice were measured using western blotting methods. Results: Single pre-treatment with glycyrrhizin (10-100 mg/kg)at 2 hours before MCAO significantly reduced infarct volumes at 24h after MCAO. In addition, glycyrrhizin effectively inhibited the activations of caspase-3 and -9 and the down-regulation of Bcl-xLprotein caused by MCAO. Conclusion: The neuro-protective effect of glycyrrhizin was found to be due to its regulation of apoptosisrelated proteins signals.The authors suggest glycyrrhizin be considered a potential candidate for the treatment of ischemia induced brain damage

    Methanol extract of Ligusticum chuanxiong Hort. Rhizome ameliorates bilateral common carotid artery stenosis-induced cognitive deficit in mice by altering microglia and astrocyte activation

    No full text
    In traditional Asian medicine, Ligusticum chuanxiong Hort also known as Conioselinum anthriscoides “Chuanxiong”, is mainly used for improving blood circulation or for analgesic and anti-inflammatory purposes, but they also have a long history of use for pain disorders in the head and face, such as headache. Despite the possibility that the plant is effective for diseases such as cerebral infarction and vascular dementia (VaD), the mechanism of action is not well understood. To determine if the dried rhizomes of L. chuanxiong (Chuanxiong Rhizoma, CR) methanol extract (CRex) has activity in a VaD mice model. Through network analysis, we confirm that CR is effective in cerebrovascular diseases. In mice, we induce cognitive impairment, similar to VaD in humans, by chronically reducing the cerebral blood flow by performing bilateral common carotid artery stenosis (BCAS) and administering CRex for 6 weeks. We measure behavioral changes due to cognitive function impairment and use immunofluorescence staining to confirm if CRex can inhibit the activation of astrocytes and microglia involved in the inflammatory response in the brain. We quantify proteins involved in the mechanism, such as mitogen-activated protein kinases (MAPK), in the hippocampus and surrounding white matter, and analyze gene expression and protein interaction networks through RNA sequencing to interpret the results of the study. CRex administration rescued cognitive impairment relating to a novel object and inhibited the activation of astrocytes and microglia. Western blotting analysis revealed that CRex regulated the changes in protein expression involved in MAPK signaling such as extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38). The administration of CRex suppressed approximately 44% of the pathological changes in gene expression caused by BCAS. CRex extract effectively inhibited cognitive impairment caused by BCAS, and the mechanism through which this occurred is inhibited activation of astrocytes and microglia

    High Dose Ilaprazole/Amoxicillin as First-Line Regimen for Helicobacter pylori Infection in Korea

    Get PDF
    Objective. The eradication rate of Helicobacter pylori (H. pylori) following standard triple therapy has declined over the past few decades. This study has determined whether high dose dual therapy (PPI and amoxicillin) is adequate for eradicating H. pylori in Korea. Methods. This was an open-labeled study of H. pylori infected treatment-naive patients. Subjects received dual therapy for 14 days: ilaprazole 40 mg tablets given twice a day and amoxicillin 750 mg tablets given 4 times a day. At the end of the therapy, the subjects visited the clinic to confirm compliance and monitor for any side effects. Subjects visited again after 4–6 weeks to confirm H. pylori status through a urea breath test. Results. The cure rate of H. pylori was 79.3% (23 of 29) (95% confidence interval: 61.6–90.2) in the intention-to-treat analysis and 82.1% (23 of 28) in the per-protocol analysis. Compliance rates were high (96.6%) and side effects were minimal and tolerable. Conclusion. A high dose of ilaprazole + amoxicillin was ineffective as the first-line therapy for eradicating H. pylori in Korea. Future studies should focus on intragastric pH measurements and assess amoxicillin resistance

    Angelica gigas root ameliorates ischaemic stroke-induced brain injury in mice by activating the PI3K/AKT/mTOR and MAPK pathways

    No full text
    Context Traditionally, the root of Angelica gigas Nakai (Umbelliferae), has long been used to treat ischaemic diseases and is considered safe in humans. Objective To investigate the neuroprotective effects of a methanol extract of A. gigas root (AGmex) on the middle cerebral artery occlusion (MCAO)-induced brain injury in mice, and the underlying mechanisms. Materials and methods Two hours of transient MCAO (tMCAO) was induced in C57BL/6 mice (MCAO control group and AGmex groups), AGmex was administered to the AGmex group at 300-3,000 mg/kg bw at 1, 1, and 24 h before tMCAO or at 1000 mg/kg bw at 1 h before and after tMCAO. Infarction volumes, tissue staining, and western blotting were used to investigate the mechanism underlying the neuroprotective effects of AGmex. Results The median effective dose (ED50) could not be measured because the AGmex treatment did not reduce the infarction volume caused by 2 h of tMCAO to within 50%; however, pre-treatment with AGmex twice at 1,000 mg/kg bw before tMCAO significantly reduced the infarction volumes. The proteins related to cell growth, differentiation, and death were upregulated by this treatment, and the major recovery mechanisms appeared to involve the attenuation of the mitochondrial function of Bcl-2/Bax and activation of the PI3K/AKT/mTOR and MAPK signalling pathways in ischaemic neurons. Conclusions This study provides evidence supporting the use of A. gigas root against ischaemic stroke and suggests a novel developmental starting point for the treatment of ischaemic stroke

    Effect of methanol extract of Salviae miltiorrhizae Radix in high-fat diet-induced hyperlipidemic mice

    No full text
    Abstract Background The dried root of Salvia miltiorrhiza, Salviae miltiorrhizae Radix (SR), is one of the most popular medicinal herbs in Asian countries such as China and Korea. In Asian traditional medicine, SR is considered to have a bitter flavor, be slightly cold in nature, and exert therapeutic actions in the heart and liver meridians. Thus, SR has been used to control symptoms related to cardiovascular diseases. Hyperlipidemia is recognized as the main cause of cerebrovascular and heart diseases; consequently, therapeutic strategies for hyperlipidemia have been widely studied. In this study, the effects and molecular targets of methanol extract of SR (SRme) in hyperlipidemic mice were investigated. Methods High-fat diet was fed to mice to induce hyperlipidemia, and measurement of blood cholesterol and triglycerides were conducted to evaluate the effect of SRme on hyperlipidemic mice, and gene expression in mice liver was analyzed to identify key molecules which could be potential targets for developing anti-hyperlipidemic herbal medicines. Results There was no significant effect on the body weight gain of hyperlipidemic mice, but the triglyceride content in blood was significantly reduced by the administration of SRme to hyperlipidemic mice. Proteins such as minichromosome maintenance (Mcm) family which play a key role in DNA replication were identified as molecular targets in the amelioration of hyperlipidemia. Conclusions SRme ameliorated hyperlipidemia in high-fat diet fed mice by inhibiting increase of blood serum level of triglycerides. And several proteins such as Mcm proteins were deduced to be molecular targets in treating hyperlipidemia

    Amelioration of Brain Damage after Treatment with the Methanolic Extract of Glycyrrhizae Radix et Rhizoma in Mice

    No full text
    Glycyrrhizae Radix et Rhizoma (GR) is a traditional herbal medicine widely used in Asian countries. GR was the most frequently used medicine among stroke patients in Donguibogam, the most representative book in Korean medicine. In the present study, we investigated the neuroprotective effects of the GR methanolic extract (GRex) on an ischemic stroke mice model. Ischemic stroke was induced by a 90 min transient middle cerebral artery occlusion (MCAO), and GRex was administered to mice with oral gavage after reperfusion of MCA blood flow. The MCAO-induced edema and infarction volume was measured, and behavioral changes were evaluated by a novel object recognition test (NORT). Immunofluorescence stains and Western blotting identified underlying mechanisms of the protective effects of GRex. GRex post-treatment in mice with MCAO showed potent effects in reducing cerebral edema and infarction at 125 mg/kg but no effects when the dosage was much lower or higher than 125 mg/kg. GRex inhibited the decrease of spontaneous motor activity and novel object recognition functions. The neuroprotective effects of GRex on ischemic stroke were due to its regulation of inflammation-related neuronal cells, such as microglia and astrocytes

    Effect of Ephedrae Herba methanol extract on high-fat diet-induced hyperlipidaemic mice

    No full text
    Context: Ephedrae Herba (EH), the dried stems and leaves of Ephedra sinica Stapf., E. intermedia Schrenk et C. A. Mey., or E. equisetina Bge. (Ephedraceae [Ephedra]) is used to treat respiratory diseases. Recently, especially in the Republic of Korea, EH has also been used for weight reduction. Objective: We evaluated the effects and molecular targets of methanol EH extract (EHM) on high-fat diet (HFD)-induced hyperlipidemic ICR mice. Materials and methods: EHM was orally administered (100 mg/kg body weight/day) for 3 weeks. We observed changes in body weight (BW), total cholesterol (TC), high-density lipoprotein–cholesterol, and triglycerides to evaluate the physiological changes induced by HFD or EHM administration. To evaluate lipid peroxidation and liver toxicity, malondialdehyde and blood alanine aminotransferase levels were measured. In addition to analyzing liver gene expression profiles, EHM target proteins were identified using a protein interaction database. Results: EHM administration for 3 weeks significantly (p < 0.05) decreased TC and triglyceride levels without altering BW in mice, and gene expression levels in the livers of EHM-treated mice were restored at 34.0% and 48.4% of those up- or down-regulated by hyperlipidaemia, respectively. Proteins related to DNA repair and energy metabolism were identified via protein interaction network analysis as molecular targets of EHM that play key roles in ameliorating hyperlipidaemia. Discussion and conclusions: EHM regulated hyperlipidaemia by decreasing total blood lipid and triglyceride levels in hyperlipidaemic mice. EHM showed preventive effects against hyperlipidaemia in mice, possibly via the regulation of DNA repair and the expression of energy metabolism-related genes and proteins
    corecore