52 research outputs found

    Distinct Clades of Protein Phosphatase 2A Regulatory B’/B56 Subunits Engage in Different Physiological Processes

    Get PDF
    Protein phosphatase 2A (PP2A) is a strongly conserved and major protein phosphatase in all eukaryotes. The canonical PP2A complex consists of a catalytic (C), scaffolding (A), and regulatory (B) subunit. Plants have three groups of evolutionary distinct B subunits: B55, B’ (B56), and B’’. Here, the Arabidopsis B’ group is reviewed and compared with other eukaryotes. Members of the B’α/B’ÎČ clade are especially important for chromatid cohesion, and dephosphorylation of transcription factors that mediate brassinosteroid (BR) signaling in the nucleus. Other B’ subunits interact with proteins at the cell membrane to dampen BR signaling or harness immune responses. The transition from vegetative to reproductive phase is influenced differentially by distinct B’ subunits; B’α and B’ÎČ being of little importance, whereas others (B’γ, B’ζ, B’η, B’ξ, B’Îș) promote transition to flowering. Interestingly, the latter B’ subunits have three motifs in a conserved manner, i.e., two docking sites for protein phosphatase 1 (PP1), and a POLO consensus phosphorylation site between these motifs. This supports the view that a conserved PP1-PP2A dephosphorelay is important in a variety of signaling contexts throughout eukaryotes. A profound understanding of these regulators may help in designing future crops and understand environmental issues.publishedVersio

    Protein–Protein Interactions and Quantitative Phosphoproteomic Analysis Reveal Potential Mitochondrial Substrates of Protein Phosphatase 2A-B’ζ Holoenzyme

    Get PDF
    Protein phosphatase 2A (PP2A) is a heterotrimeric conserved serine/threonine phosphatase complex that includes catalytic, scaffolding, and regulatory subunits. The 3 A subunits, 17 B subunits, and 5 C subunits that are encoded by the Arabidopsis genome allow 255 possible PP2A holoenzyme combinations. The regulatory subunits are crucial for substrate specificity and PP2A complex localization and are classified into the B, B’, and B” non-related families in land plants. In Arabidopsis, the close homologs B’η, B’ξ, B’γ, and B’ζ are further classified into a subfamily of B’ called B’η. Previous studies have suggested that mitochondrial targeted PP2A subunits (B’ζ) play a role in energy metabolism and plant innate immunity. Potentially, the PP2A-B’ζ holoenzyme is involved in the regulation of the mitochondrial succinate/fumarate translocator, and it may affect the enzymes involved in energy metabolism. To investigate this hypothesis, the interactions between PP2A-B’ζ and the enzymes involved in the mitochondrial energy flow were investigated using bimolecular fluorescence complementation in tobacco and onion cells. Interactions were confirmed between the B’ζ subunit and the Krebs cycle proteins succinate/fumarate translocator (mSFC1), malate dehydrogenase (mMDH2), and aconitase (ACO3). Additional putative interacting candidates were deduced by comparing the enriched phosphoproteomes of wild type and B’ζ mutants: the mitochondrial regulator Arabidopsis pentatricopeptide repeat 6 (PPR6) and the two metabolic enzymes phosphoenolpyruvate carboxylase (PPC3) and phosphoenolpyruvate carboxykinase (PCK1). Overall, this study identifies potential PP2A substrates and highlights the role of PP2A in regulating energy metabolism in mitochondria.publishedVersio

    Identification and characterisation of CYP75A31, a new flavonoid 3'5'-hydroxylase, isolated from Solanum lycopersicum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding the regulation of the flavonoid pathway is important for maximising the nutritional value of crop plants and possibly enhancing their resistance towards pathogens. The flavonoid 3'5'-hydroxylase (F3'5'H) enzyme functions at an important branch point between flavonol and anthocyanin synthesis, as is evident from studies in petunia (<it>Petunia hybrida</it>), and potato (<it>Solanum tuberosum</it>). The present work involves the identification and characterisation of a <it>F3'5'H </it>gene from tomato (<it>Solanum lycopersicum</it>), and the examination of its putative role in flavonoid metabolism.</p> <p>Results</p> <p>The cloned and sequenced tomato <it>F3'5'H </it>gene was named <it>CYP75A31</it>. The gene was inserted into the <it>pYeDP60 </it>expression vector and the corresponding protein produced in yeast for functional characterisation. Several putative substrates for F3'5'H were tested <it>in vitro </it>using enzyme assays on microsome preparations. The results showed that two hydroxylation steps occurred. Expression of the <it>CYP75A31 </it>gene was also tested <it>in vivo</it>, in various parts of the vegetative tomato plant, along with other key genes of the flavonoid pathway using real-time PCR. A clear response to nitrogen depletion was shown for <it>CYP75A31 </it>and all other genes tested. The content of rutin and kaempferol-3-rutinoside was found to increase as a response to nitrogen depletion in most parts of the plant, however the growth conditions used in this study did not lead to accumulation of anthocyanins.</p> <p>Conclusions</p> <p><it>CYP75A31 </it>(NCBI accession number GQ904194), encodes a flavonoid 3'5'-hydroxylase, which accepts flavones, flavanones, dihydroflavonols and flavonols as substrates. The expression of the <it>CYP75A31 </it>gene was found to increase in response to nitrogen deprivation, in accordance with other genes in the phenylpropanoid pathway, as expected for a gene involved in flavonoid metabolism.</p

    Multi-targeted trehalose-6-phosphate phosphatase I harbors a novel peroxisomal targeting signal 1 and is essential for flowering and development

    Get PDF
    A putative, non-canonical peroxisomal targeting signal type 1 (PTS1) Pro-Arg-Met > was identified in the extreme C-terminus of trehalose-6-phosphate phosphatase (TPP)I. TPP catalyzes the final step of trehalose synthesis, and the enzyme was previously characterized to be nuclear only (Krasensky et al. in Antioxid Redox Signal 21(9):1289–1304, 2014). Here we show that the TPPI C-terminal decapeptide ending with Pro-Arg-Met > or Pro-Lys-Met > can indeed function as a PTS1. Upon transient expression in two plant expression systems, the free C- or N-terminal end led to the full-length TPPI targeting to peroxisomes and plastids, respectively. The nucleus and nucleolus targeting of the full-length TPPI was observed in both cases. The homozygous T-DNA insertion line of TPPI showed a pleiotropic phenotype including smaller leaves, shorter roots, delayed flowering, hypersensitivity to salt, and a sucrose dependent seedling development. Our results identify novel PTS1s, and TPPI as a protein multi-targeted to peroxisomes, plastids, nucleus, and nucleolus. Altogether our findings implicate an essential role for TPPI in development, reproduction, and cell signaling.publishedVersio

    Loss of LEUCINE CARBOXYL METHYLTRANSFERASE 1 interferes with metal homeostasis in Arabidopsis and enhances susceptibility to environmental stresses

    Get PDF
    The biochemical function of LEUCINE CARBOXYL METHYLTRANSFERASE 1 (LCMT1) is to transfer a methyl group from the methyl donor S-adenosylmethionine (SAM) to the catalytic subunits of PROTEIN PHOSPHATASE 2A (PP2Ac), PP4 and PP6. This post-translational modification by LCMT1 is found throughout eukaryotes from yeast to animals and plants, indicating that its function is essential. However, Arabidopsis with knocked out LCMT1 still grows and develops almost normally, at least under optimal growth conditions. We therefore proposed that the presence of LCMT1 would be important under non-optimal growth conditions and favoured plant survival during evolution. To shed light on the physiological functions of plant LCMT1, phenotypes of the lcmt1 mutant and wild type Arabidopsis were compared under various conditions including exposure to heavy metals, variable chelator concentrations, and increased temperature. The lcmt1 mutant was found to be more susceptible to these environmental changes than wild type and resulted in poor growth of seedlings and rosette stage plants. Element analysis of rosette stage plants mainly showed a difference between the lcmt1 mutant and wild type regarding concentrations of sodium and boron, two-fold up or halved, respectively. In both lcmt1 and wild type, lack of EDTA in the growth medium resulted in enhanced concentration of copper, manganese, zinc and sulphur, and especially lcmt1 growth was hampered by these conditions. The altered phenotype in response to stress, the element and mRNA transcript analysis substantiate that LCMT1 has an important role in metal homeostasis and show that functional LCMT1 is necessary to prevent damages from heat, heavy metals or lack of chelator.publishedVersio

    Heterogeneous nutrient supply modulates root exudation and accumulation of medicinally valuable compounds in Artemisia annua and Hypericum perforatum

    Get PDF
    Plants have evolved complex mechanisms to adapt to nutrient-deficient environments, including stimulating lateral root proliferation into local soil patches with high nutrient content in response to heterogeneous nutrient distribution. Despite the widespread occurrence of this phenomenon in soil, the effect of heterogeneous nutrient distribution on the accumulation of secondary compounds in plant biomass and their exudation by roots remains largely unknown. This study aims to fill this critical knowledge gap by investigating how deficiency and unequal distributions of nitrogen (N), phosphorus (P), and iron (Fe) affect plant growth and accumulation of the antimalarial drug artemisinin (AN) in leaves and roots of Artemisia annua, as well as AN exudation by roots. Heterogeneous N and P supplies strongly increased root exudation of AN in half of a split-root system exposed to nutrient deficiency. By contrast, exposure to a homogeneous nitrate and phosphate deficiency did not modulate root exudation of AN. This indicates that a combination of local and systemic signals, reflecting low and high nutritional statuses, respectively, were required to enhance AN exudation. This exudation response was independent of the regulation of root hair formation, which was predominantly modulated by the local signal. In contrast to the heterogeneous supply of N and P, heterogeneous Fe supply did not modulate AN root exudation but increased AN accumulation in locally Fe-deficient roots. No modulation of nutrient supply significantly changed the accumulation of AN in A. annua leaves. The impact of a heterogeneous nitrate supply on growth and phytochemical composition was also investigated in Hypericum perforatum plants. Unlike in A. annue, the uneven N supply did not significantly influence the exudation of secondary compounds in the roots of H. perforatum. However, it did enhance the accumulation of several biologically active compounds, such as hypericin, catechin, and rutin isomers, in the leaves of H. perforatum. We propose that the capacity of plants to induce the accumulation and/or differential exudation of secondary compounds under heterogeneous nutrient supply is both species- and compound-specific. The ability to differentially exude AN may contribute to A. annua’s adaptation to nutrient disturbances and modulate allelopathic and symbiotic interactions in the rhizosphere

    Effects of media components and environmental factors on shoot formation from protoplast-derived calli of Solanum tuberosum

    No full text
    The influence of several media components and environmental factors on shoot formation in protoplast-derived calli of Solanum tuberosum (a Rosamunda cross) were studied. Low sucrose concentration (3-15 mM) was beneficial for optimal shoot induction. Several concentrations of NO3- and NH4+ were suitable for shoot induction as long as the concentration of NO3- was about twice the concentration of NH4+ or higher. No stimulatory effect of glutamine, proline, putrescine, spermidine, spermine or adenine sulphate at 0.5 and 2 mM were found. White light promoted shoot induction compared with red and blue light or darkness. The intensity of light was shown to be a critical factor for good shoot induction. Lower light intensity (30 ΌE m-2 s-1) resulted in doubling of the number of calli producing shoots compared with higher (110 ΌE m-2 s-1) light intensity. A temperature of 20°C promoted shoot regeneration compared to 25°C. Based on these results improved conditions for regeneration of S. tuberosum are suggested, and shown to enhance shoot formation in five other genotypes tested

    Specific PP2A Catalytic Subunits Are a Prerequisite for Positive Growth Effects in Arabidopsis Co-Cultivated with Azospirillum brasilense and Pseudomonas simiae

    Get PDF
    Plant growth-promoting rhizobacteria (PGPR) stimulate plant growth, but the underlying mechanism is poorly understood. In this study, we asked whether PROTEIN PHOSPHATASE 2A (PP2A), a regulatory molecular component of stress, growth, and developmental signaling networks in plants, contributes to the plant growth responses induced by the PGPR Azospirillum brasilense (wild type strain Sp245 and auxin deficient strain FAJ0009) and Pseudomonas simiae (WCS417r). The PGPR were co-cultivated with Arabidopsis wild type (WT) and PP2A (related) mutants. These plants had mutations in the PP2A catalytic subunits (C), and the PP2A activity-modulating genes LEUCINE CARBOXYL METHYL TRANSFERASE 1 (LCMT1) and PHOSPHOTYROSYL PHOSPHATASE ACTIVATOR (PTPA). When exposed to the three PGPR, WT and all mutant Arabidopsis revealed the typical phenotype of PGPR-treated plants with shortened primary root and increased lateral root density. Fresh weight of plants generally increased when the seedlings were exposed to the bacteria strains, with the exception of catalytic subunit double mutant c2c5. The positive effect on root and shoot fresh weight was especially pronounced in Arabidopsis mutants with low PP2A activity. Comparison of different mutants indicated a significant role of the PP2A catalytic subunits C2 and C5 for a positive response to PGPR.publishedVersio

    Protein-Protein Interactions and Quantitative Phosphoproteomic Analysis Reveal Potential Mitochondrial Substrates of Protein Phosphatase 2A-B'& zeta; Holoenzyme

    Get PDF
    Protein phosphatase 2A (PP2A) is a heterotrimeric conserved serine/threonine phosphatase complex that includes catalytic, scaffolding, and regulatory subunits. The 3 A subunits, 17 B subunits, and 5 C subunits that are encoded by the Arabidopsis genome allow 255 possible PP2A holoenzyme combinations. The regulatory subunits are crucial for substrate specificity and PP2A complex localization and are classified into the B, B', and B" non-related families in land plants. In Arabidopsis, the close homologs B'& eta;, B'& theta;, B'& gamma;, and B'& zeta; are further classified into a subfamily of B' called B'& eta;. Previous studies have suggested that mitochondrial targeted PP2A subunits (B'& zeta;) play a role in energy metabolism and plant innate immunity. Potentially, the PP2A-B'& zeta; holoenzyme is involved in the regulation of the mitochondrial succinate/fumarate translocator, and it may affect the enzymes involved in energy metabolism. To investigate this hypothesis, the interactions between PP2A-B'& zeta; and the enzymes involved in the mitochondrial energy flow were investigated using bimolecular fluorescence complementation in tobacco and onion cells. Interactions were confirmed between the B'& zeta; subunit and the Krebs cycle proteins succinate/fumarate translocator (mSFC1), malate dehydrogenase (mMDH2), and aconitase (ACO3). Additional putative interacting candidates were deduced by comparing the enriched phosphoproteomes of wild type and B'& zeta; mutants: the mitochondrial regulator Arabidopsis pentatricopeptide repeat 6 (PPR6) and the two metabolic enzymes phosphoenolpyruvate carboxylase (PPC3) and phosphoenolpyruvate carboxykinase (PCK1). Overall, this study identifies potential PP2A substrates and highlights the role of PP2A in regulating energy metabolism in mitochondria

    NADH substrate inhibition and enhanced thermal stability of higher plant nitrate reductase immobilized via a monoclonal antibody

    No full text
    The molecular basis of light-induced circadian rhythms of higher plant NADH:nitrate reductase (EC 1.6.6.1) activity is presently not understood. We have investigated whether the regulatory properties of NADH:nitrate reductase would allow oscillatory or related dynamic behavior. We report here the first example of NADH substrate inhibition of higher plant nitrate reductase in solution and for an immobilized enzyme using a novel immobilization technique with a monoclonal antibody. According to current theories on chemical oscillatory reactions, substrate inhibition will allow bistable and oscillatory behavior when the substrate-enzyme reaction is carried out in an open system. We also found a significant enhanced thermal stability of the immobilized enzyme. © 1989
    • 

    corecore