28 research outputs found

    Development, confirmation, and application of a seeded Escherichia coli process control organism to validate Salmonella enterica serovar Typhi environmental surveillance methods

    Get PDF
    Salmonella enterica serovar Typhi (S. Typhi) is the causative agent of Typhoid fever. Blood culture is the gold standard for clinical diagnosis, but this is often difficult to employ in resource limited settings. Environmental surveillance of waste-impacted waters is a promising supplement to clinical surveillance, however validating methods is challenging in regions where S. Typhi concentrations are low. To evaluate existing S. Typhi environmental surveillance methods, a novel process control organism (PCO) was created as a biosafe surrogate. Using a previous described qPCR assay, a modified PCR amplicon for the staG gene was cloned into E. coli. We developed a target region that was recognized by the Typhoid primers in addition to a non-coding internal probe sequence. A multiplex qPCR reaction was developed that differentiates between the typhoid and control targets, with no cross-reactivity or inhibition of the two probes. The PCO was shown to mimic S. Typhi in lab-based experiments with concentration methods using primary wastewater: filter cartridge, recirculating Moore swabs, membrane filtration, and differential centrifugation. Across all methods, the PCO seeded at 10 CFU/mL and 100 CFU/mL was detected in 100% of replicates. The PCO is detected at similar quantification cycle (Cq) values across all methods at 10 CFU/mL (Average = 32.4, STDEV = 1.62). The PCO was also seeded into wastewater at collection sites in Vellore (India) and Blantyre (Malawi) where S. Typhi is endemic. All methods tested in both countries were positive for the seeded PCO. The PCO is an effective way to validate performance of environmental surveillance methods targeting S. Typhi in surface water

    Performance and workflow assessment of six nucleic acid extraction technologies for use in resource limited settings.

    No full text
    Infectious disease nucleic acid amplification technologies (NAAT) have superior sensitivity, specificity, and rapid time to result compared to traditional microbiological methods. Recovery of concentrated, high quality pathogen nucleic acid (NA) from complex specimen matrices is required for optimal performance of several NA amplification/detection technologies such as polymerase chain reaction (PCR). Fully integrated NAAT platforms that enable rapid sample-to-result workflows with minimal user input are generally restricted to larger reference lab settings, and their complexity and cost are prohibitive to widespread implementation in resource limited settings (RLS). Identification of component technologies for incorporation of reliable and affordable sample preparation with pathogen NA amplification/detection into an integrated platform suitable for RLS, is a necessary first step toward achieving the overarching goal of reducing infectious disease-associated morbidity and mortality globally. In the current study, we evaluate the performance of six novel NA extraction technologies from different developers using blinded panels of stool, sputum and blood spiked with variable amounts of quality-controlled DNA- and/or RNA-based microbes. The extraction efficiencies were semi-quantitatively assessed using validated real-time reverse transcription (RT)-PCR assays specific for each microbe and comparing target-specific RT-PCR results to those obtained with reference NA extraction methods. The technologies were ranked based on overall diagnostic accuracy (analytical sensitivity and specificity). Sample input and output volumes, total processing time, user-required manual steps and cost estimates were also examined for suitability in RLS. Together with the performance analysis, these metrics were used to select the more suitable candidate technologies for further optimization of integrated NA amplification and detection technologies for RLS

    Semiquantitative Nucleic Acid Test with Simultaneous Isotachophoretic Extraction and Amplification

    No full text
    Nucleic acid amplification tests (NAATs) provide high diagnostic accuracy for infectious diseases and quantitative results for monitoring viral infections. The majority of NAATs require complex equipment, cold chain dependent reagents, and skilled technicians to perform the tests. This largely confines NAATs to centralized laboratories and can significantly delay appropriate patient care. Low-cost, point-of-care (POC) NAATs are especially needed in low-resource settings to provide patients with diagnosis and treatment planning in a single visit to improve patient care. In this work, we present a rapid POC NAAT with integrated sample preparation and amplification using electrokinetics and paper substrates. We use simultaneous isotachophoresis (ITP) and recombinase polymerase amplification (RPA) to rapidly extract, amplify, and detect target nucleic acids from serum and whole blood in a paper-based format. We demonstrate simultaneous ITP and RPA can consistently detect 5 copies per reaction in buffer and 10 000 copies per milliliter of human serum with no intermediate user steps. We also show preliminary extraction and amplification of DNA from whole blood samples. Our test is rapid (results in less than 20 min) and made from low-cost materials, indicating its potential for detecting infectious diseases and monitoring viral infections at the POC in low resource settings

    Semiquantitative Nucleic Acid Test with Simultaneous Isotachophoretic Extraction and Amplification

    No full text
    Nucleic acid amplification tests (NAATs) provide high diagnostic accuracy for infectious diseases and quantitative results for monitoring viral infections. The majority of NAATs require complex equipment, cold chain dependent reagents, and skilled technicians to perform the tests. This largely confines NAATs to centralized laboratories and can significantly delay appropriate patient care. Low-cost, point-of-care (POC) NAATs are especially needed in low-resource settings to provide patients with diagnosis and treatment planning in a single visit to improve patient care. In this work, we present a rapid POC NAAT with integrated sample preparation and amplification using electrokinetics and paper substrates. We use simultaneous isotachophoresis (ITP) and recombinase polymerase amplification (RPA) to rapidly extract, amplify, and detect target nucleic acids from serum and whole blood in a paper-based format. We demonstrate simultaneous ITP and RPA can consistently detect 5 copies per reaction in buffer and 10 000 copies per milliliter of human serum with no intermediate user steps. We also show preliminary extraction and amplification of DNA from whole blood samples. Our test is rapid (results in less than 20 min) and made from low-cost materials, indicating its potential for detecting infectious diseases and monitoring viral infections at the POC in low resource settings

    A multicenter analytical performance evaluation of a multiplexed immunoarray for the simultaneous measurement of biomarkers of micronutrient deficiency, inflammation and malarial antigenemia.

    No full text
    A lack of comparative data across laboratories is often a barrier to the uptake and adoption of new technologies. Furthermore, data generated by different immunoassay methods may be incomparable due to a lack of harmonization. In this multicenter study, we describe validation experiments conducted in a single lab and cross-lab comparisons of assay results to assess the performance characteristics of the Q-plex™ 7-plex Human Micronutrient Array (7-plex), an immunoassay that simultaneously quantifies seven biomarkers associated with micronutrient (MN) deficiencies, inflammation and malarial antigenemia using plasma or serum; alpha-1-acid glycoprotein, C-reactive protein, ferritin, histidine-rich protein 2, retinol binding protein 4, soluble transferrin receptor, and thyroglobulin. Validations included repeated testing (n = 20 separately prepared experiments on 10 assay plates) in a single lab to assess precision and linearity. Seven independent laboratories tested 76 identical heparin plasma samples collected from a cohort of pregnant women in Niger using the same 7-plex assay to assess differences in results across laboratories. In the analytical validation experiments, intra- and inter-assay coefficients of variation were acceptable at <6% and <15% respectively and assay linearity was 96% to 99% with the exception of ferritin, which had marginal performance in some tests. Cross-laboratory comparisons showed generally good agreement between laboratories in all analyte results for the panel of 76 plasma specimens, with Lin's concordance correlation coefficient values averaging ≥0.8 for all analytes. Excluding plates that would fail routine quality control (QC) standards, the inter-assay variation was acceptable for all analytes except sTfR, which had an average inter-assay coefficient of variation of ≥20%. This initial cross-laboratory study demonstrates that the 7-plex test protocol can be implemented by users with some experience in immunoassay methods, but familiarity with the multiplexed protocol was not essential

    A description of the candidate Igs used in this work.

    No full text
    Also listed is the type of antigen used for the immunogen, the type of antibody, the epitopes recognized (where known) and other pertinent information. Key: TB, tuberculosis; rAb, recombinant antibody; Ara, arabinose; Man, Mannose; MTX, 5-methylthio-xylofuranose; mIg, monoclonal antibody; UNKN, unknown; cLAM, cultured lipoarabinomannan; VLP, virus-like particle; Fab, antigen-binding fragment.</p
    corecore