10 research outputs found

    Molecular Epidemiology and Transmission Dynamics of Recent and Long-Term HIV-1 Infections in Rural Western Kenya.

    No full text
    To identify unique characteristics of recent versus established HIV infections and describe sexual transmission networks, we characterized circulating HIV-1 strains from two randomly selected populations of ART-naïve participants in rural western Kenya.Recent HIV infections were identified by the HIV-1 subtype B, E and D, immunoglobulin G capture immunoassay (IgG BED-CEIA) and BioRad avidity assays. Genotypic and phylogenetic analyses were performed on the pol gene to identify transmitted drug resistance (TDR) mutations, characterize HIV subtypes and potential transmission clusters. Factors associated with recent infection and clustering were assessed by logistic regression.Of the 320 specimens, 40 (12.5%) were concordantly identified by the two assays as recent infections. Factors independently associated with being recently infected were age ≤19 years (P = 0.001) and history of sexually transmitted infections (STIs) in the past six months (P = 0.004). HIV subtype distribution differed in recently versus chronically infected participants, with subtype A observed among 53% recent vs. 68% chronic infections (p = 0.04) and subtype D among 26% recent vs. 12% chronic infections (p = 0.012). Overall, the prevalence of primary drug resistance was 1.16%. Of the 258 sequences, 11.2% were in monophyletic clusters of between 2-4 individuals. In multivariate analysis factors associated with clustering included having recent HIV infection P = 0.043 and being from Gem region P = 0.002.Recent HIV-1 infection was more frequent among 13-19 year olds compared with older age groups, underscoring the ongoing risk and susceptibility of younger persons for acquiring HIV infection. Our findings also provide evidence of sexual networks. The association of recent infections with clustering suggests that early infections may be contributing significant proportions of onward transmission highlighting the need for early diagnosis and treatment as prevention for ongoing prevention. Larger studies are needed to better understand the structure of these networks and subsequently implement and evaluate targeted interventions

    Distribution of HIV-1 subtypes among participants, by recency of infection, Western Kenya, October 2003-May 2005.

    No full text
    <p><b>(A)</b> Long term (>239 days) (B) recent infections (≤239 days) (Fig 1B). A, C, D, G represent pure subtypes while AD, AC, CD are unique recombinant forms, CRF; Complex recombinants forms.</p

    HIV-1 transmission clusters among heterosexuals in the Gem and Asembo region of Western Kenya.

    No full text
    <p>Phylogenetic tree showing HIV-1 transmission clusters in the Gem and Asembo region. The highlighted tree nodes represent members in transmission clusters with bootstrap values of 85% and mean genetic distance of 0.015-nucleotide substitution per site. Sequences with drug resistance mutation are highlighted with grey. The clusters correlate with the demographic information shown in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0147436#pone.0147436.t004" target="_blank">table 4</a> in a clockwise phase (Cluster 1 through 12).</p

    Health-status outcomes with invasive or conservative care in coronary disease

    No full text
    BACKGROUND In the ISCHEMIA trial, an invasive strategy with angiographic assessment and revascularization did not reduce clinical events among patients with stable ischemic heart disease and moderate or severe ischemia. A secondary objective of the trial was to assess angina-related health status among these patients. METHODS We assessed angina-related symptoms, function, and quality of life with the Seattle Angina Questionnaire (SAQ) at randomization, at months 1.5, 3, and 6, and every 6 months thereafter in participants who had been randomly assigned to an invasive treatment strategy (2295 participants) or a conservative strategy (2322). Mixed-effects cumulative probability models within a Bayesian framework were used to estimate differences between the treatment groups. The primary outcome of this health-status analysis was the SAQ summary score (scores range from 0 to 100, with higher scores indicating better health status). All analyses were performed in the overall population and according to baseline angina frequency. RESULTS At baseline, 35% of patients reported having no angina in the previous month. SAQ summary scores increased in both treatment groups, with increases at 3, 12, and 36 months that were 4.1 points (95% credible interval, 3.2 to 5.0), 4.2 points (95% credible interval, 3.3 to 5.1), and 2.9 points (95% credible interval, 2.2 to 3.7) higher with the invasive strategy than with the conservative strategy. Differences were larger among participants who had more frequent angina at baseline (8.5 vs. 0.1 points at 3 months and 5.3 vs. 1.2 points at 36 months among participants with daily or weekly angina as compared with no angina). CONCLUSIONS In the overall trial population with moderate or severe ischemia, which included 35% of participants without angina at baseline, patients randomly assigned to the invasive strategy had greater improvement in angina-related health status than those assigned to the conservative strategy. The modest mean differences favoring the invasive strategy in the overall group reflected minimal differences among asymptomatic patients and larger differences among patients who had had angina at baseline

    Initial invasive or conservative strategy for stable coronary disease

    No full text
    BACKGROUND Among patients with stable coronary disease and moderate or severe ischemia, whether clinical outcomes are better in those who receive an invasive intervention plus medical therapy than in those who receive medical therapy alone is uncertain. METHODS We randomly assigned 5179 patients with moderate or severe ischemia to an initial invasive strategy (angiography and revascularization when feasible) and medical therapy or to an initial conservative strategy of medical therapy alone and angiography if medical therapy failed. The primary outcome was a composite of death from cardiovascular causes, myocardial infarction, or hospitalization for unstable angina, heart failure, or resuscitated cardiac arrest. A key secondary outcome was death from cardiovascular causes or myocardial infarction. RESULTS Over a median of 3.2 years, 318 primary outcome events occurred in the invasive-strategy group and 352 occurred in the conservative-strategy group. At 6 months, the cumulative event rate was 5.3% in the invasive-strategy group and 3.4% in the conservative-strategy group (difference, 1.9 percentage points; 95% confidence interval [CI], 0.8 to 3.0); at 5 years, the cumulative event rate was 16.4% and 18.2%, respectively (difference, 121.8 percentage points; 95% CI, 124.7 to 1.0). Results were similar with respect to the key secondary outcome. The incidence of the primary outcome was sensitive to the definition of myocardial infarction; a secondary analysis yielded more procedural myocardial infarctions of uncertain clinical importance. There were 145 deaths in the invasive-strategy group and 144 deaths in the conservative-strategy group (hazard ratio, 1.05; 95% CI, 0.83 to 1.32). CONCLUSIONS Among patients with stable coronary disease and moderate or severe ischemia, we did not find evidence that an initial invasive strategy, as compared with an initial conservative strategy, reduced the risk of ischemic cardiovascular events or death from any cause over a median of 3.2 years. The trial findings were sensitive to the definition of myocardial infarction that was used
    corecore