38 research outputs found
Relationship between intact HIV-1 proviruses in circulating CD4+ T cells and rebound viruses emerging during treatment interruption.
Combination antiretroviral therapy controls but does not cure HIV-1 infection because a small fraction of cells harbor latent viruses that can produce rebound viremia when therapy is interrupted. The circulating latent virus reservoir has been documented by a variety of methods, most prominently by viral outgrowth assays (VOAs) in which CD4+ T cells are activated to produce virus in vitro, or more recently by amplifying proviral near full-length (NFL) sequences from DNA. Analysis of samples obtained in clinical studies in which individuals underwent analytical treatment interruption (ATI), showed little if any overlap between circulating latent viruses obtained from outgrowth cultures and rebound viruses from plasma. To determine whether intact proviruses amplified from DNA are more closely related to rebound viruses than those obtained from VOAs, we assayed 12 individuals who underwent ATI after infusion of a combination of two monoclonal anti-HIV-1 antibodies. A total of 435 intact proviruses obtained by NFL sequencing were compared with 650 latent viruses from VOAs and 246 plasma rebound viruses. Although, intact NFL and outgrowth culture sequences showed similar levels of stability and diversity with 39% overlap, the size of the reservoir estimated from NFL sequencing was larger than and did not correlate with VOAs. Finally, intact proviruses documented by NFL sequencing showed no sequence overlap with rebound viruses; however, they appear to contribute to recombinant viruses found in plasma during rebound
Paired quantitative and qualitative assessment of the replication-competent HIV-1 reservoir and comparison with integrated proviral DNA
HIV-1-infected individuals harbor a latent reservoir of infected CD4⁺ T cells that is not eradicated by antiretroviral therapy (ART). This reservoir presents the greatest barrier to an HIV-1 cure and has remained difficult to characterize, in part, because the vast majority of integrated sequences are defective and incapable of reactivation. To characterize the replication-competent reservoir, we have combined two techniques, quantitative viral outgrowth and qualitative sequence analysis of clonal outgrowth viruses. Leukapheresis samples from four fully ART-suppressed, chronically infected individuals were assayed at two time points separated by a 4- to 6-mo interval. Overall, 54% of the viruses emerging from the latent reservoir showed gp160 env sequences that were identical to at least one other virus. Moreover, 43% of the env sequences from viruses emerging from the reservoir were part of identical groups at the two time points. Groups of identical expanded sequences made up 54% of proviral DNA, and, as might be expected, the sequences of replication-competent viruses in the active reservoir showed limited overlap with integrated proviral DNA, most of which is known to represent defective viruses. Finally, there was an inverse correlation between proviral DNA clone size and the probability of reactivation, suggesting that replication-competent viruses are less likely to be found among highly expanded provirus-containing cell clones
The immune response fails to control HIV early in initial virus spread
Discontinued antiretroviral therapy (ART) results in uncontrolled HIV replication in most cases. How the virus population that persists during ART escapes immune control remains unknown. In this issue of the JCI, Mitchell and authors investigated plasmacytoid dendritic cells (pDCs) from the blood of individuals living with HIV. After ART was discontinued and as the virus began to spread, an apparently functional pDC response emerged. Notably, these pDCs were initially capable of producing high levels of type I IFN, but rapidly lost this capacity, even before the virus became readily detectable in blood. This study suggests that dysfunctional pDCs are a key initial mechanism associated with poor HIV control. These innate immune responses might be targeted in the emerging efforts to cure HIV disease
The Evolution of Capital Structure and Operating Performance after Leveraged Buyouts: Evidence from U.S. Corporate Tax Returns
Recommended from our members
The Biology of the HIV-1 Latent Reservoir and Implications for Cure Strategies
Antiretroviral therapy (ART) inhibits HIV replication but is not curative. During ART, the integrated HIV genome persists indefinitely within CD4+ T cells and perhaps other cells. Here, we describe the mechanisms thought to contribute to its persistence during treatment and highlight findings from numerous recent studies describing the importance of cell proliferation in that process. Continued progress elucidating the biology will enhance our ability to develop effective curative interventions
The evolution of capital structure and operating performance after leveraged buyouts: Evidence from U.S. corporate tax returns
Antigen responsive CD4<sup>+</sup> T cell clones contribute to the HIV-1 latent reservoir
AbstractAntiretroviral therapy suppresses but does not cure HIV-1 infection due to the existence of a long-lived reservoir of latently infected cells. The reservoir has an estimated half-life of 44 months and is largely composed of clones of infected CD4+ T cells. The long half-life appears to result in part from expansion and contraction of infected CD4+ T cell clones. However, the mechanisms that govern this process are poorly understood. To determine whether the clones might result from, and be maintained by exposure to antigen, we measured responses of reservoir cells to a small subset of antigens from viruses that produce chronic or recurrent infections. Despite the limited panel of test antigens, clones of antigen responsive CD4+ T cells containing defective or intact latent proviruses were found in 7 out of 8 individuals studied. Thus, chronic or repeated exposure to antigen may contribute to the longevity of the HIV-1 reservoir by stimulating the clonal expansion of latently infected CD4+ T cells.</jats:p
