20 research outputs found

    Tropical peatlands under siege: The need for evidence-based policies and strategies

    No full text

    Carbon dioxide and methane fluxes in grazed and undisturbed mountain peatlands in the Ecuadorian Andes

    No full text
    Peatlands are widespread throughout the tropical Andean páramo. Despite the large carbon stocks in these ecosystems, carbon dioxide (CO2) and methane (CH4) flux data are lacking. In addition, cattle grazing is widespread in the páramo and could alter gas fluxes. Therefore, our objectives were to measure CO2 and CH4 fluxes with the static chamber technique in an undisturbed and in an intensively cattle grazed peatland in the mountains of Ecuador. We found that hummocks in the undisturbed site had higher net ecosystem exchange (NEE), gross primary production (GPP), ecosystem respiration (ER), and CH4 fluxes, compared to lawns. In contrast, microtopography at the grazed site did not predict CO2 fluxes, whereas vegetation cover was correlated for all three metrics (NEE, ER, and GPP). At low vegetation cover, NEE was positive (losing carbon). CH4 emissions in the undisturbed site were low (8.1 mg CH4 m-2 d-1). In contrast, CH4 emissions at the grazed site were much greater (132.3 mg CH4 m-2 d-1). This is probably attributable to trampling and nutrient inputs from cattle. In summary, the two peatlands differed greatly in CO2 and CH4 exchange rates, which could be due to the variation in climate and hydrology, or alternatively to intensive grazing by cattle

    Peatland carbon stocks and accumulation rates in the Ecuadorian páramo

    No full text

    Carbon storage and long-term rate of accumulation in high-altitude Andean peatlands of Bolivia

    No full text
    (1) The high-altitude (4,500+ m) Andean mountain range of north-western Bolivia contains many peatlands. Despite heavy grazing pressure and potential damage from climate change, little is known about these peatlands. Our objective was to quantify carbon pools, basal ages and long-term peat accumulation rates in peatlands in two areas of the arid puna ecoregion of Bolivia: near the village of Manasaya in the Sajama National Park (Cordillera Occidentale), and in the Tuni Condoriri National Park (Cordillera Real). (2) We cored to 5 m depth in the Manasaya peatland, whose age at 5 m was ca. 3,675 yr. BP with a LARCA of 47 g m-2 yr-1. However, probing indicated that the maximum depth was 7–10 m with a total estimated (by extrapolation) carbon stock of 1,040 Mg ha-1. The Tuni peat body was 5.5 m thick and initiated ca. 2,560 cal. yr. BP. The peatland carbon stock was 572 Mg ha-1 with a long-term rate of carbon accumulation (LARCA) of 37 g m-2 yr-1. (3) Despite the dry environment of the Bolivian puna, the region contains numerous peatlands with high carbon stocks and rapid carbon accumulation rates. These peatlands are heavily used for llama and alpaca grazing

    Advancing the use of minirhizotrons in wetlands.

    No full text
    corecore