17 research outputs found

    The relationship between biological and psychosocial risk factors and resting‐state functional connectivity in 2‐monthold Bangladeshi infants: A feasibility and pilot study

    Get PDF
    Childhood poverty has been associated with structural and functional alterations in the developing brain. However, poverty does not alter brain development directly, but acts through associated biological or psychosocial risk factors (e.g. malnutrition, family conflict). Yet few studies have investigated risk factors in the context of infant neurodevelopment, and none have done so in low‐resource settings such as Bangladesh, where children are exposed to multiple, severe biological and psychosocial hazards. In this feasibility and pilot study, usable resting‐state fMRI data were acquired in infants from extremely poor (n = 16) and (relatively) more affluent (n = 16) families in Dhaka, Bangladesh. Whole‐brain intrinsic functional connectivity (iFC) was estimated using bilateral seeds in the amygdala, where iFC has shown susceptibility to early life stress, and in sensory areas, which have exhibited less susceptibility to early life hazards. Biological and psychosocial risk factors were examined for associations with iFC. Three resting‐state networks were identified in within‐group brain maps: medial temporal/striatal, visual, and auditory networks. Infants from extremely poor families compared with those from more affluent families exhibited greater (i.e. less negative) iFC in precuneus for amygdala seeds; however, no group differences in iFC were observed for sensory area seeds. Height‐for‐age, a proxy for malnutrition/infection, was not associated with amygdala/precuneus iFC, whereas prenatal family conflict was positively correlated. Findings suggest that it is feasible to conduct infant fMRI studies in low‐resource settings. Challenges and practical steps for successful implementations are discussed

    A global multicohort study to map subcortical brain development and cognition in infancy and early childhood

    Get PDF
    The human brain grows quickly during infancy and early childhood, but factors influencing brain maturation in this period remain poorly understood. To address this gap, we harmonized data from eight diverse cohorts, creating one of the largest pediatric neuroimaging datasets to date focused on birth to 6 years of age. We mapped the developmental trajectory of intracranial and subcortical volumes in ~2,000 children and studied how sociodemographic factors and adverse birth outcomes influence brain structure and cognition. The amygdala was the first subcortical volume to mature, whereas the thalamus exhibited protracted development. Males had larger brain volumes than females, and children born preterm or with low birthweight showed catch-up growth with age. Socioeconomic factors exerted region- and time-specific effects. Regarding cognition, males scored lower than females; preterm birth affected all developmental areas tested, and socioeconomic factors affected visual reception and receptive language. Brain-cognition correlations revealed region-specific associations

    Impact of acetylsalicylic acid in patients undergoing cerebral aneurysm surgery – should the neurosurgeon really worry about it?

    No full text
    There has been an increase in the use of acetylsalicylic acid (ASA, Aspirin®) among patients with stroke and heart disease as well as in aging populations as a means of primary prevention. The potentially life-threatening consequences of a postoperative hemorrhagic complication after neurosurgical operative procedures are well known. In the present study, we evaluate the risk of continued ASA use as it relates to postoperative hemorrhage and cardiopulmonary complications in patients undergoing cerebral aneurysm surgery. We retrospectively analyzed 200 consecutive clipping procedures performed between 2008 and 2018. Two different statistical models were applied. The first model consisted of two groups: (1) group with No ASA impact - patients who either did not use ASA at all as well as those who had stopped their use of the ASA medication in time (> = 7 days prior to operation); (2) group with ASA impact - all patients whose ASA use was not stopped in time. The second model consisted of three groups: (1) No ASA use; (2) Stopped ASA use (> = 7 days prior to operation); (3) Continued ASA use (did not stop or did not stop in time, <7 days prior to operation). Data collection included demographic information, surgical parameters, aneurysm characteristics, and all hemorrhagic/thromboembolic complications. A postoperative hemorrhage was defined as relevant if a consecutive operation for hematoma removal was necessary. An ASA effect has been assumed in 32 out of 200 performed operations. A postoperative hemorrhage occurred in one out these 32 patients (3.1%). A postoperative hemorrhage in patients without ASA impact was detected and treated in 5 out of 168 patients (3.0%). The difference was statistically not significant in either model (ASA impact group vs. No ASA impact group: OR = 1.0516 [0.1187; 9.3132], p = 1.000; RR = 1.0015 [0.9360; 1.0716]). Cardiopulmonary complications were significantly more frequent in the group with ASA impact than in the group without ASA impact (p = 0.030). In this study continued ASA use was not associated with an increased risk of a postoperative hemorrhage. However, cardiopulmonary complications were significantly more frequent in the ASA impact group than in the No ASA impact group. Thus, ASA might relatively safely be continued in patients with increased cardiovascular risk and cases of emergency cerebrovascular surgery

    Magnesium protects in episodes of critical perfusion after aneurysmal SAH

    No full text
    To analyze whether magnesium has a neuroprotective effect during episodes that indicate a critical brain perfusion after aneurysmal subarachnoid hemorrhage (SAH)

    Magnesium protects in episodes of critical perfusion after aneurysmal SAH

    No full text
    Background: To analyze whether magnesium has a neuroprotective effect during episodes that indicate a critical brain perfusion after aneurysmal subarachnoid hemorrhage (SAH). Methods: 107 patients with aSAH were randomized to continuously receive intravenous magnesium sulfate with target serum levels of 2.0 – 2.5 mmol/l (n = 54) or isotonic saline (n = 53). Neurological examination and transcranial Doppler sonography (TCD) were performed daily, Perfusion-CT (PCT) was acquired in 3-day intervals, angiography in case of suspected vasospasm. The primary endpoint was the development of secondary infarction following episodes of delayed ischemic neurological deficit (DIND), elevated mean flow velocity (MFV) in TCD or pathological findings in PCT. Results: In the magnesium group, 9 episodes of DIND were registered, none was followed by secondary infarction. In the control group, 23 episodes of DIND were registered, 9 were followed by secondary infarction (p 140 cm/s). 7 were followed by new infarction. In control patients, 135 measurements showed elevated MFV, 32 were followed by new infarction (p < 0.05). 10 of 117 abnormal PCT-findings were followed by new infarction, compared to 30 of 122 in the control-group (p < 0.05). Conclusion: DIND, elevated MFV in TCD and abnormal PCT are findings which are associated with an increased risk to develop delayed secondary infarction. The results of this analysis suggest that magnesium-treatment may reduce the risk to develop infarction in a state of critical brain perfusion

    Early antiinflammatory therapy attenuates brain damage after SAH in rats

    No full text
    Background Early inflammatory processes may play an important role in the development of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Experimental studies suggest that anti-inflammatory and membrane-stabilizing drugs might have beneficial effects, although the underlying mechanisms are not fully understood. The aim of this study was to investigate the effect of early treatment with methylprednisolone and minocycline on cerebral perfusion and EBI after experimental SAH. Methods Male Sprague-Dawley rats were subjected to SAH using the endovascular filament model. 30 minutes after SAH, they were randomly assigned to receive an intravenous injection of methylprednisolone (16mg/kg body weight, n=10), minocycline (45mg/kg body weight, n=10) or saline (n=11). Mean arterial blood pressure (MABP), intracranial pressure (ICP) and local cerebral blood flow (LCBF) over both hemispheres were recorded continuously for three hours following SAH. Neurological assessment was performed after 24 hours. Hippocampal damage was analyzed by immunohistochemical staining (caspase 3). Results Treatment with methylprednisolone or minocycline did not result in a significant improvement of MABP, ICP or LCBF. Animals of both treatment groups showed a non-significant trend to better neurological recovery compared to animals of the control group. Mortality was reduced and hippocampal damage significantly attenuated in both methylprednisolone and minocycline treated animals. Conclusion The results of this study suggest that inflammatory processes may play an important role in the pathophysiology of EBI after SAH. Early treatment with the anti-inflammatory drugs methylprednisolone or minocycline in the acute phase of SAH has the potential to reduce brain damage and exert a neuroprotective effect

    Case Report: A Case Series Using Natural Anatomical Gaps — Posterior Cervical Approach to Skull Base and Upper Craniocervical Meningiomas Without Bone Removal

    No full text
    Background: Removal of anteriorly located tumors of the upper cervical spine and craniovertebral junction (CVJ) is a particular surgical challenge. Extensive approaches are associated with pain, restricted mobility of neck and head and, in case of foramen magnum and clivus tumors, with retraction of brainstem and cerebellum. Methods: Four symptomatic patients underwent resection of anteriorly located upper cervical and lower clivus meningiomas without laminotomy or craniotomy using a minimally invasive posterior approach. Distances of natural gaps between C0/C1, C1/C2, and C2/C3 were measured using preoperative CT scans and intraoperative lateral x-rays. Results: In all patients, safe and complete resection was conducted by the opening of the dura between C0/C1, C1/C2, and C2/C3, respectively. There were no surgical complications. Local pain was reported as very moderate by all patients and postoperative recovery was extremely fast. All tumors had a rather soft consistency, allowing mass reduction prior to removal of the tumor capsule and were well separable from lower cranial nerves and vascular structures. Conclusion: If tumor consistency is appropriate for careful mass reduction before removal of the tumor capsule and if tumor margins are not firmly attached to crucial structures, then upper cervical, foramen magnum, and lower clivus meningiomas can be safely and completely removed through natural gaps in the CVJ region. Both prerequisites usually become clear early during surgery. Thus, this tumor entity may be planned using this minimally invasive approach and may be extended if tumor consistency turns out to be less unfavorable for resection or if crucial structures cannot be easily separated from the tumor

    Early antiinflammatory therapy attenuates brain damage after sah in rats

    No full text
    Early inflammatory processes may play an important role in the development of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Experimental studies suggest that anti-inflammatory and membrane-stabilizing drugs might have beneficial effects, although the underlying mechanisms are not fully understood. The aim of this study was to investigate the effect of early treatment with methylprednisolone and minocycline on cerebral perfusion and EBI after experimental SAH

    Neuroprotective Strategies in Aneurysmal Subarachnoid Hemorrhage (aSAH)

    No full text
    Aneurysmal subarachnoid hemorrhage (aSAH) remains a disease with high mortality and morbidity. Since treating vasospasm has not inevitably led to an improvement in outcome, the actual emphasis is on finding neuroprotective therapies in the early phase following aSAH to prevent secondary brain injury in the later phase of disease. Within the early phase, neuroinflammation, thromboinflammation, disturbances in brain metabolism and early neuroprotective therapies directed against delayed cerebral ischemia (DCI) came into focus. Herein, the role of neuroinflammation, thromboinflammation and metabolism in aSAH is depicted. Potential neuroprotective strategies regarding neuroinflammation target microglia activation, metalloproteases, autophagy and the pathway via Toll-like receptor 4 (TLR4), high mobility group box 1 (HMGB1), NF-κB and finally the release of cytokines like TNFα or IL-1. Following the link to thromboinflammation, potential neuroprotective therapies try to target microthrombus formation, platelets and platelet receptors as well as clot clearance and immune cell infiltration. Potential neuroprotective strategies regarding metabolism try to re-balance the mismatch of energy need and supply following aSAH, for example, in restoring fuel to the TCA cycle or bypassing distinct energy pathways. Overall, this review addresses current neuroprotective strategies in aSAH, hopefully leading to future translational therapy options to prevent secondary brain injury

    First Description of Reduced Pyruvate Dehydrogenase Enzyme Activity Following Subarachnoid Hemorrhage (SAH)

    Get PDF
    Object: Several previous studies reported metabolic derangements and an accumulation of metabolic products in the early phase of experimental subarachnoid hemorrhage (SAH), which may contribute to secondary brain damage. This may be a result of deranged oxygen utilization due to enzymatic dysfunction in aerobic glucose metabolism. This study was performed to investigate, if pyruvate dehydrogenase enzyme (PDH) is affected in its activity giving further hints for a derangement of oxidative metabolism. Methods: Eighteen male Sprague-Dawley rats were randomly assigned to one of two experimental groups (n = 9): (1) SAH induced by the endovascular filament model and (2) sham-operated controls. Mean arterial blood pressure (MABP), intracranial pressure (ICP), and local cerebral blood flow (LCBF; laser-Doppler flowmetry) were continuously monitored from 30 min before until 3 h after SAH. Thereafter, the animals were sacrificed and PDH activity was measured by ELISA. Results: PDH activity was significantly reduced in animals subjected to SAH compared to controls. Conclusion: The results of this study demonstrate for the first time a reduction of PDH activity following SAH, independent of supply of substrates and may be an independent factor contributing to a derangement of oxidative metabolism, failure of oxygen utilization, and secondary brain damage
    corecore