45 research outputs found

    dUTPase based switch controls transfer of virulence genes in order to preserve integrity of the transferred mobile genetic elements

    Get PDF
    dUTPases ubiquitously regulate cellular dUTP levels to preserve genome integrity. Recently, several other cellular processes were reported to be controlled by dUTPases including the horizontal transfer of Staphylococcus aureus pathogenicity islands (SaPI). SaPIs are mobil genetic elements that encode virulence enhancing factors e.g. toxins. Here, phage dUTPases were proposed to counteract the repressor protein (Stl) and promote SaPI excision and transfer. A G protein-like mechanism was proposed which is unexpected in light of the kinetic mechanism of dUTPase. Here we investigate the molecular mechanism of SaPI transfer regulation, using numerous dUTPase variants and a wide range of in vitro methods (steady-state and transient kinetics, VIS and fluorescence spectroscopy, EMSA, quartz crystal microbalance, X-ray crystallography). Our results unambiguously show that Stl inhibits the enzymatic activity of dUTPase in the nM concentration range and dUTP strongly inhibits the dUTPase: Stl complexation. These results identify Stl as a highly potent dUTPase inhibitor protein and disprove the G protein-like mechanism. Importantly, our results clearly show that the dUTPase:dUTP complex is inaccessible to the Stl repressor. Unlike in small GTPases, hydrolysis of the substrate nucleoside triphosphate (dUTP in this case) is required prior to the interaction with the partner (Stl repressor in this case). We propose that dUTPase can efficiently interact with Stl and induce SaPI excision only if the cellular dUTP level is low (i.e. when dUTPase resides mainly in the apo enzyme form) while high dUTP levels would inhibit SaPI transfer. This mechanism may serve the preservation of the integrity of the transferred SaPI genes and links the well-known metabolic role of dUTPases to their newly revealed regulatory function in spread of virulence factors

    Lysophosphatidic acid-3 receptor-mediated feed-forward production of lysophosphatidic acid: an initiator of nerve injury-induced neuropathic pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously reported that intrathecal injection of lysophosphatidylcholine (LPC) induced neuropathic pain through activation of the lysophosphatidic acid (LPA)-1 receptor, possibly via conversion to LPA by autotaxin (ATX).</p> <p>Results</p> <p>We examined <it>in vivo </it>LPA-induced LPA production using a biological titration assay with B103 cells expressing LPA<sub>1 </sub>receptors. Intrathecal administration of LPC caused time-related production of LPA in the spinal dorsal horn and dorsal roots, but not in the dorsal root ganglion, spinal nerve or sciatic nerve. LPC-induced LPA production was markedly diminished in ATX heterozygotes, and was abolished in mice that were deficient in LPA<sub>3</sub>, but not LPA<sub>1 </sub>or LPA<sub>2 </sub>receptors. Similar time-related and LPA<sub>3 </sub>receptor-mediated production of LPA was observed following intrathecal administration of LPA. In an <it>in vitro </it>study using spinal cord slices, LPA-induced LPA production was also mediated by ATX and the LPA<sub>3 </sub>receptor. Intrathecal administration of LPA, in contrast, induced neuropathic pain, which was abolished in mice deficient in LPA<sub>1 </sub>or LPA<sub>3 </sub>receptors.</p> <p>Conclusion</p> <p>These findings suggest that feed-forward LPA production is involved in LPA-induced neuropathic pain.</p

    New semisynthetic vinca alkaloids: chemical, biochemical and cellular studies

    Get PDF
    A new semisynthetic anti-tumour bis-indol compound, KAR-2 [3′-(β-chloroethyl)-2′,4′-dioxo-3,5′-spiro-oxazolidino-4-deacetoxy-vinblastine] with lower toxicity than vinca alkaloids used in chemotherapy binds to calmodulin but, in contrast to vinblastine, does not exhibit anti-calmodulin activity. To investigate whether the modest chemical modification of bis-indol structure is responsible for the lack of anti-calmodulin potency and for the different pharmacological effects, new derivatives have been synthesized for comparative studies. The synthesis of the KAR derivatives are presented. The comparative studies showed that the spiro-oxazolidino ring and the substitution of a formyl group to a methyl one were responsible for the lack of anti-calmodulin activities. The new derivatives, similar to the mother compounds, inhibited the tubulin assembly in polymerization tests in vitro, however their inhibitory effect was highly dependent on the organization state of microtubules; bundled microtubules appeared to be resistant against the drugs. The maximal cytotoxic activities of KAR derivatives in in vivo mice hosting leukaemia P388 or Ehrlich ascites tumour cells appeared similar to that of vinblastine or vincristine, however significant prolongation of life span could be reached with KAR derivatives only after the administration of a single dose. These studies plus data obtained using a cultured human neuroblastoma cell line showed that KAR compounds displayed their cytotoxic activities at significantly higher concentrations than the mother compounds, although their antimicrotubular activities were similar in vitro. These data suggest that vinblastine/vincristine damage additional crucial cell functions, one of which could be related to calmodulin-mediated processes. © 1999 Cancer Research Campaig

    An Introduction to Sphingolipid Metabolism and Analysis by New Technologies

    Get PDF
    Sphingolipids (SP) are a complex class of molecules found in essentially all eukaryotes and some prokaryotes and viruses where they influence membrane structure, intracellular signaling, and interactions with the extracellular environment. Because of the combinatorial nature of their biosynthesis, there are thousands of SP subspecies varying in the lipid backbones and complex phospho- and glycoheadgroups. Therefore, comprehensive or “sphingolipidomic” analyses (structure-specific, quantitative analyses of all SP, or at least all members of a critical subset) are needed to know which and how much of these subspecies are present in a system as a step toward understanding their functions. Mass spectrometry and related novel techniques are able to quantify a small fraction, but nonetheless a substantial number, of SP and are beginning to provide information about their localization. This review summarizes the basic metabolism of SP and state-of-art mass spectrometric techniques that are producing insights into SP structure, metabolism, functions, and some of the dysfunctions of relevance to neuromedicine

    Trans, trans

    No full text

    A novel function of sphingosine-1-phosphate to activate a non-selective cation channel in human endothelial cells

    No full text
    The Ca2+ entry pathway activated by sphingosine-1-phosphate (S1P) was examined in primary cultured vascular endothelial cells dispersed from human umbilical vein (HUVECs) by measuring intracellular Ca2+ concentration ([Ca2+]i), whole-cell membrane currents and single channel activity.Application of S1P to HUVECs induced a slowly developing, sustained increase in [Ca2+]i. When Ca2+ was absent from the bathing solution, no S1P-induced changes in [Ca2+]i were observed. Tert-butylhydroquinone (BHQ), an inhibitor of Ca2+ pumps in endoplasmic reticulum, and histamine induced a transient elevation of [Ca2+]i in HUVECs.Pretreatment of HUVECs with 100 ng ml−1 pertussis toxin (PTX) for 15 h almost abolished the S1P effect on [Ca2+]i and reduced the histamine effect to 40 % of the control. The BHQ-induced elevation of [Ca2+]i was insensitive to PTX.When whole-cell membrane currents were recorded using the amphotericin B-perforated-patch clamp technique while monitoring [Ca2+]i, application of S1P induced a tiny inward current (IS1P) which was followed by the elevation of [Ca2+]i. IS1P reversed at +20.0 ± 2.7 mV under these experimental conditions.When S1P was included in the pipette solution in the excised inside-out patch clamp configuration, single channel activity with a conductance of 17 pS was activated. This channel activity depended on the presence of intracellular GTP.In summary, these results show that S1P has a novel effect in mammalian cardiovascular endothelium to activate a non-selective cation (NSC) channel in a GTP-dependent manner via a PTX-sensitive G-protein. This S1P-sensitive NSC channel acts as a Ca2+ entry pathway in endothelium
    corecore