10 research outputs found

    Production of polyhydroxyalkanoates by Bacillus megaterium : prospecting on rice hull and residual glycerol potential

    Get PDF
    The production of polyhydroxyalkanoates (PHAs) by Bacillus megaterium using industrial residues, crude glycerol from biodiesel synthesis and rice hull hydrolysate (RHH), as low-cost carbon sources was investigated. The experiments were conducted by shaking flasks at 30 C and 180 rpm up to 72 h. The extraction of PHA was carried out using sodium hypochlorite to make its recovery more environmentally friendly by avoiding organic solvents (chloroform). The yields of PHA varied depending on the extraction method. A total of 33.3% (w w1) (mixing chloroform: sodium hypochlorite) and 52.5% (w w1) (sodium hypochlorite only) were obtained using glycerol and glucose as a carbon source, respectively. Preliminary experiments using RHH as a carbon source Indicated a yield of PHA of 11% (w w1) (chloroform). The PHA produced had thermal properties, such as transition temperature, similar to the commercial polyhydroxybutyrate (PHB)

    Bioconversão de hidrolisados de casca de arroz e soja em etanol e xilitol por leveduras

    Get PDF
    Os resíduos lignocelulósicos agroindustriais, como a casca de arroz e a casca de soja, são fontes abundantes e de baixo custo na produção biotecnológica de compostos de alto valor agregado como etanol e xilitol, por figurarem como fontes de celulose e hemicelulose. No presente trabalho será estudada a capacidade de conversão dos açúcares provenientes destes resíduos por diferentes leveduras ampliando os conhecimentos sobre a produção biotecnológica de alcoóis. A capacidade de Candida shehatae, Saccharomyces cerevisiae, e a co-cultura destas duas leveduras na conversão do açúcar presente no hidrolisado de casca de arroz (RHH) utilizado como substrato para a produção de etanol foi estudada. Em experimentos em agitador orbital, as co-culturas dessas leveduras apresentaram rendimentos de etanol (YP/S) de 0,42 e 0,51 em meio sintético simulando a composição do hidrolisado e em RHH, respectivamente. Ao analisar a produção de etanol com culturas puras de C. shehatae o rendimento de etanol foi ligeiramente inferior (0,40). Visando analisar o metabolismo das leveduras sob condições de anaerobiose e de limitação de oxigênio, foram realizados experimentos em biorreatores, onde a utilização de co-culturas produziu rendimentos de etanol similares em ambas condições (0,50-0,51) em meio sintético, enquanto que em RHH, rendimentos de 0,48 e 0,44 foram obtidos, respectivamente. Novas estratégias de produção de etanol a partir de hidrolisado de casca de arroz também foram testadas, como a sacarificação e co-fermentação simultânea por S. cerevisiae, Spathaspora arborariae e pela combinação destas leveduras. Nas culturas sob limitação de oxigênio, S. cerevisiae foi capaz de metabolizar a glicose presente RHH, resultando em um rendimento de etanol (YP/S) de 0,45. A co-cultura de S. cerevisiae e S. arborariae foi capaz de metabolizar pentoses e hexoses presentes em RHH, obtendo YP/S de 0,48 g g -1 e rendimento de xilitol (YX/X ) de 0,39 g g -1 e com o uso de sacarificação e co-fermentação simultânea produziu-se 14,5 e 3 g L-1 de etanol e xilitol, respectivamente. No hidrolisado de casca de soja (SHH), testou-se a capacidade das celulases provenientes do fungo Penicillium echinulatum S1M29, em aumentar a quantidade de açúcares no meio de hidrolisado. O rendimento de sacarificação foi de 72 %, quando foi utilizado 15 FPU g-1 de matéria seca, incubado num agitador orbital a 120 rpm, 50 ºC durante 96 h. Após a sacarificação, a capacidade das células imobilizadas de S. cerevisiae, C. shehatae, S. arborariae, ou a combinação de C. shehatae, S. arborariae com S. cerevisiae, para a conversão de açúcares presentes em SHH como substrato para a produção de etanol foi estudada. Os melhores coeficientes de rendimento de etanol (YP/S) foram de 0,45, 0,47 e 0,38, utilizando culturas puras de S. cerevisiae, C. shehatae, e S. arborariae respectivamente, e YP/S de 0,48 e 0,40 g g -1, para co-culturas de S. cerevisiae e C. shehatae ou S. arborariae, respectivamente. As leveduras com os melhores rendimentos de etanol (S. cerevisiae e C. shehatae) tiveram seu metabolismo testado em biorreatores imobilizados. Estas culturas em biorreatores produziram um rendimento do etanol de 0,49, para S. cerevisiae e 0,41 g g -1 usando C. shehatae. Visando a melhora do processo de fermentação do hidrolisado de casca de soja (HCS), realizaram-se experimentos estatísticos (Plackett-Burman e CCD), para diferentes condições operacionais e formulações do meio. Com o Plackett-Burman testou-se os efeitos da suplementação com quatro nutrientes (peptona, extrato de levedura, milhocina e Tween 80). Através do planejamento fatorial composto central (CCD) com quatro repetições no ponto central e seis pontos axiais, analisou-se os efeitos das condições de fermentação (temperatura, pH e tamanho do inóculo) para a produção de etanol por C . guilliermondii. Os resultados demonstraram que nenhuma suplementação do meio foi necessária, sendo C. guilliermondii capaz de crescer em hidrolisado não-suplementado e não-desintoxicado. As melhores condições de cultura foram determinadas pelo CCD como sendo de 28 °C, pH 5.0, e 109 UFC ml-1 de tamanho do inóculo, respectivamente. O coeficiente de produtividade de etanol atingiu um máximo de 1,4 g L-1 h-1 cerca de 80 % do rendimento teórico esperado, resultando em um coeficiente de rendimento de etanol (YP/S) de 0,41 g g-1.The lignocellulosic agroindustrial residues such as rice hull and soybean hull are abundant and inexpensive wastes and can be used in biotechnological production of high value-added compounds such as ethanol and xylitol, like sources of cellulose and hemicellulose. In this paper was tested the ability of converting sugars from these wastes by different yeasts, using the knowledge about the biotechnological production of alcohols. The ability of Candida shehatae, Saccharomyces cerevisiae, or the combination of these two yeasts in converting the mixed sugar composition of rice hull hydrolysate (RHH) as substrate for ethanol production is presented. In shake flask experiments, co-cultures showed ethanol yields (YP/S) of 0.42 and 0.51 in synthetic medium simulating the sugar composition of RHH and in RHH, respectively, with both glucose and xylose being completely depleted, while pure cultures of C. shehatae produced slightly lower ethanol yields (0.40). Experiments were scaled-up to bioreactors, in which anaerobiosis and oxygen limitation conditions were tested. Bioreactor co-cultures produced similar ethanol yields in both conditions (0.50-0.51) in synthetic medium, while in RHH, yields of 0.48 and 0.44 were obtained, respectively. New technologies to produce ethanol from RHH were tested, with the simultaneous saccharification and co-fermentation by S. cerevisiae, Spathaspora arborariae and the combination of these yeasts. In bioreactor cultures under oxygen limitation, S. cerevisiae was capable of metabolizing glucose from RHH, which contained small amounts of acetic acid, furfural, and hydroxymethylfurfural, achieving ethanol yields of 0.45. In the co-culture of S. cerevisiae and S. arborariae pentoses and hexoses from RHH, were converted to ethanol and xylitol, with yields of 0.48 and 0.39, and using simultaneous saccharification and co-fermentation with both yeasts produced ethanol and xylitol to final concentrations of 14.5 g L-1 and 3 g L-1, respectively. In soybean hull hydrolysate (SHH), was studied the ability of cellulase from Penicillium echinulatum S1M29, to increase the amount of sugars in the hydrolysate medium. The saccharification yield was 72 % using 15 FPU g-1 dry matter on orbital shaker at 120 rpm, 50 °C for 96 h. After saccharification, the ability of immobilized cells of S. cerevisiae, C. shehatae, S. arborariae, or a combination of C. shehatae, S. arborariae with S. cerevisiae for the conversion of sugars present in SHH as a substrate for ethanol production was studied. In shaker cultivations, the bioconversion of SHH into ethanol showed yields (YP/S) of 0.43, 0.47, and 0.38, in cultures of S. cerevisiae, C. shehatae, and S.arborariae, respectively. Co-cultures of S. cerevisiae and C. shehatae or S. cerevisiae and S. arborariae, produced YP/S of 0.48 and 0.40, respectively. S. cerevisiae and C.shehatae were immobilized in Ca-alginate and cultivated in bioreactors to analyse the possibility of scaling up this process. Immobilized-cell cultures showed yields of 0.45 and 0.38, respectively. Aiming to improve the fermentation of soybean hull hydrolysate (HCS), operational conditions and medium formulation were optimized using statistical experimental designs (Plackett-Burman and CCD). Plackett-Burman was used to analysate the effects of supplementation with four nutrients (peptone, yeast extract, corn steep liquor and Tween 80). Using factorial central composite design (CCD) with four replications at the center point and six axial points, was examined the effects of fermentation conditions (temperature, pH, and inoculum size) for ethanol production by Candida guilliermondii BL13. Results showed that C. guilliermondii was capable of growing in non-supplemented, non-detoxified hydrolysate, and the best culture conditions were determined to be 28 °C, pH 5.0, and 109 CFU mL-1 inoculum size, respectively. Ethanol productivity peaked at 1.4 g L-1 h-1 and yields of 0.41 g g-1, about 80 % of expected theoretical yields, were observed

    Rice hull hydrolysis optimization and evaluation of this hydrolysate bioconversion to ethanol and xylitol by yeasts

    No full text
    Os resíduos lignocelulósicos agroindustriais, como a casca de arroz, são fontes abundantes e de baixo custo de celulose e hemicelulose, para produção biotecnológica de compostos de alto valor agregado, como os alcoóis, etanol e xilitol. O presente trabalho teve como objetivo otimizar a hidrólise ácida diluída da casca de arroz, utilizando como ferramenta o planejamento experimental, e ampliar os conhecimentos sobre a produção biotecnológica de etanol e xilitol, mediante o cultivo de microrganismos sobre esse hidrolisado. Um planejamento composto central 22 com três pontos centrais foi realizado abrangendo apenas as variáveis significativas para liberação de açúcares (temperatura e concentração de ácido). A máxima solubilização dos açúcares (70% de eficiência) foi obtida a 150ºC e 3 mmol H2SO4 g-1 sólido seco (SS), gerando cerca de 2,3 g L-1 de tóxicos totais (soma de inibidores ácido acético, furfural e hidroximetilfurfural). No entanto, é desejável que o hidrolisado contenha baixo teor de compostos tóxicos, já que estes podem comprometer a eficiência da fermentação. Sendo assim, a condição que empregou a temperatura de 129ºC e 4,4 mmol H2SO4 g-1 SS, apresentando 52% de eficiência na liberação de açúcares e apenas 0,18 g l-1 de inibidores, foi selecionada. Cultivos sobre meio semissintético e hidrolisado de casca de arroz, a 180 rpm e 30oC, foram realizados em agitador orbital, utilizando leveduras fermentadoras de hexoses e pentoses, como Saccharomyces cerevisiae, e Candida shehatae, Pichia stipitis e Spathaspora arborariae, respectivamente, em cultivos isolados e em co-cultivo. As cepas testadas isoladamente apresentaram valores de produtividade de etanol (YP/S) entre 0,35 e 0,46 g g-1, enquanto que o rendimento dos co-cultivos variou de 0,30 a 0,77 g g-1 de etanol, sobre ambos os meios. Cultivos foram conduzidos em biorreatores submersos utilizando S. cerevisiae, individualmente e em consórcio com S. arborariae sobre hidrolisado de casca de arroz (1 vvm de aeração e 300 rpm). O maior rendimento de etanol foi obtido no cultivo isolado de S. cerevisiae, com YP/S de 0,52 g g-1, enquanto que o co-cultivo apresentou um YP/S de 0,42 g g-1. Foi avaliado o desempenho do processo de sacarificação e fermentação simultânea sobre hidrolisado de casca de arroz não filtrado, associando um complexo enzimático (contendo celulases e xilanases) ao co-cultivo (S. cerevisiae - S. arborariae), este processo aumentou a produtividade de etanol em 26%.Agroindustrial lignocellulosic residues such as rice hulls, are abundant resources and low cost of cellulose and hemicellulose, compounds for biotechnological production of high value by-products, such as alcohols, ethanol and xylitol. This study aimed to optimize the dilute acid hydrolysis of rice hull, using the experimental design tool and expand knowledge about the biotechnological production of ethanol and xylitol by cultivation of microorganisms on the hydrolysate. A 22 central composite design with three central points was carried out covering only the significant variables for the release of sugars (acid concentration and temperature). The maximum sugars solubilization (70% efficiency) was obtained at 150°C and 3 mmol H2SO4 g-1 dry solids (SS), generating about 2.3 g L-1 of toxic compounds (sum of acetic acid inhibitors, furfural and hydroxymethylfurfural). However, it is desirable that the hydrolysate contains low levels of toxic compounds, as these can compromise the efficiency of fermentation. Thus, the condition that used the temperature of 129°C and 4.4 mmol g-1 H2SO4 g-1 SS, with 52% efficiency in the release of sugars and only 0.18 g l-1 inhibitors, has been selected. Cultures on semi-synthetic medium and hydrolysate rice hull at 180 rpm and 30oC, were performed in shaker, using yeast that ferment hesoxes as Saccharomyces cerevisiae, and pentoses as Candida shehatae, Pichia stipitis and Spathaspora arborariae, in isolated cultures and co-cultivation. The strains tested alone showed ethanol yields coefficients values (YP/S) between 0.35 and 0.46 g g-1, while the yields of co-cultures varied from 0.30 to 0.77 g g-1 ethanol, on both media. Cultures were conducted in submerged bioreactors using S. cerevisiae, both individually and in consortium with S. arborariae on hydrolysate rice hull (1 vvm aeration and 300 rpm). The highest ethanol yield coefficient was obtained in the culture isolate of S. cerevisiae, with YP/S = 0.52 g g-1, while the co-culture showed YP/S of 0.42 g g-1. The performance of the simultaneous saccharification and fermentation process of rice hull hydrolysate (unfiltered), involving an enzyme complex (containing cellulases and xylanases) to co-cultivation (S. cerevisiae-S. arborariae), were evaluated, and this process increases the ethanol yield in 26%

    Rice hull hydrolysis optimization and evaluation of this hydrolysate bioconversion to ethanol and xylitol by yeasts

    No full text
    Os resíduos lignocelulósicos agroindustriais, como a casca de arroz, são fontes abundantes e de baixo custo de celulose e hemicelulose, para produção biotecnológica de compostos de alto valor agregado, como os alcoóis, etanol e xilitol. O presente trabalho teve como objetivo otimizar a hidrólise ácida diluída da casca de arroz, utilizando como ferramenta o planejamento experimental, e ampliar os conhecimentos sobre a produção biotecnológica de etanol e xilitol, mediante o cultivo de microrganismos sobre esse hidrolisado. Um planejamento composto central 22 com três pontos centrais foi realizado abrangendo apenas as variáveis significativas para liberação de açúcares (temperatura e concentração de ácido). A máxima solubilização dos açúcares (70% de eficiência) foi obtida a 150ºC e 3 mmol H2SO4 g-1 sólido seco (SS), gerando cerca de 2,3 g L-1 de tóxicos totais (soma de inibidores ácido acético, furfural e hidroximetilfurfural). No entanto, é desejável que o hidrolisado contenha baixo teor de compostos tóxicos, já que estes podem comprometer a eficiência da fermentação. Sendo assim, a condição que empregou a temperatura de 129ºC e 4,4 mmol H2SO4 g-1 SS, apresentando 52% de eficiência na liberação de açúcares e apenas 0,18 g l-1 de inibidores, foi selecionada. Cultivos sobre meio semissintético e hidrolisado de casca de arroz, a 180 rpm e 30oC, foram realizados em agitador orbital, utilizando leveduras fermentadoras de hexoses e pentoses, como Saccharomyces cerevisiae, e Candida shehatae, Pichia stipitis e Spathaspora arborariae, respectivamente, em cultivos isolados e em co-cultivo. As cepas testadas isoladamente apresentaram valores de produtividade de etanol (YP/S) entre 0,35 e 0,46 g g-1, enquanto que o rendimento dos co-cultivos variou de 0,30 a 0,77 g g-1 de etanol, sobre ambos os meios. Cultivos foram conduzidos em biorreatores submersos utilizando S. cerevisiae, individualmente e em consórcio com S. arborariae sobre hidrolisado de casca de arroz (1 vvm de aeração e 300 rpm). O maior rendimento de etanol foi obtido no cultivo isolado de S. cerevisiae, com YP/S de 0,52 g g-1, enquanto que o co-cultivo apresentou um YP/S de 0,42 g g-1. Foi avaliado o desempenho do processo de sacarificação e fermentação simultânea sobre hidrolisado de casca de arroz não filtrado, associando um complexo enzimático (contendo celulases e xilanases) ao co-cultivo (S. cerevisiae - S. arborariae), este processo aumentou a produtividade de etanol em 26%.Agroindustrial lignocellulosic residues such as rice hulls, are abundant resources and low cost of cellulose and hemicellulose, compounds for biotechnological production of high value by-products, such as alcohols, ethanol and xylitol. This study aimed to optimize the dilute acid hydrolysis of rice hull, using the experimental design tool and expand knowledge about the biotechnological production of ethanol and xylitol by cultivation of microorganisms on the hydrolysate. A 22 central composite design with three central points was carried out covering only the significant variables for the release of sugars (acid concentration and temperature). The maximum sugars solubilization (70% efficiency) was obtained at 150°C and 3 mmol H2SO4 g-1 dry solids (SS), generating about 2.3 g L-1 of toxic compounds (sum of acetic acid inhibitors, furfural and hydroxymethylfurfural). However, it is desirable that the hydrolysate contains low levels of toxic compounds, as these can compromise the efficiency of fermentation. Thus, the condition that used the temperature of 129°C and 4.4 mmol g-1 H2SO4 g-1 SS, with 52% efficiency in the release of sugars and only 0.18 g l-1 inhibitors, has been selected. Cultures on semi-synthetic medium and hydrolysate rice hull at 180 rpm and 30oC, were performed in shaker, using yeast that ferment hesoxes as Saccharomyces cerevisiae, and pentoses as Candida shehatae, Pichia stipitis and Spathaspora arborariae, in isolated cultures and co-cultivation. The strains tested alone showed ethanol yields coefficients values (YP/S) between 0.35 and 0.46 g g-1, while the yields of co-cultures varied from 0.30 to 0.77 g g-1 ethanol, on both media. Cultures were conducted in submerged bioreactors using S. cerevisiae, both individually and in consortium with S. arborariae on hydrolysate rice hull (1 vvm aeration and 300 rpm). The highest ethanol yield coefficient was obtained in the culture isolate of S. cerevisiae, with YP/S = 0.52 g g-1, while the co-culture showed YP/S of 0.42 g g-1. The performance of the simultaneous saccharification and fermentation process of rice hull hydrolysate (unfiltered), involving an enzyme complex (containing cellulases and xylanases) to co-cultivation (S. cerevisiae-S. arborariae), were evaluated, and this process increases the ethanol yield in 26%

    Bioconversão de hidrolisados de casca de arroz e soja em etanol e xilitol por leveduras

    Get PDF
    Os resíduos lignocelulósicos agroindustriais, como a casca de arroz e a casca de soja, são fontes abundantes e de baixo custo na produção biotecnológica de compostos de alto valor agregado como etanol e xilitol, por figurarem como fontes de celulose e hemicelulose. No presente trabalho será estudada a capacidade de conversão dos açúcares provenientes destes resíduos por diferentes leveduras ampliando os conhecimentos sobre a produção biotecnológica de alcoóis. A capacidade de Candida shehatae, Saccharomyces cerevisiae, e a co-cultura destas duas leveduras na conversão do açúcar presente no hidrolisado de casca de arroz (RHH) utilizado como substrato para a produção de etanol foi estudada. Em experimentos em agitador orbital, as co-culturas dessas leveduras apresentaram rendimentos de etanol (YP/S) de 0,42 e 0,51 em meio sintético simulando a composição do hidrolisado e em RHH, respectivamente. Ao analisar a produção de etanol com culturas puras de C. shehatae o rendimento de etanol foi ligeiramente inferior (0,40). Visando analisar o metabolismo das leveduras sob condições de anaerobiose e de limitação de oxigênio, foram realizados experimentos em biorreatores, onde a utilização de co-culturas produziu rendimentos de etanol similares em ambas condições (0,50-0,51) em meio sintético, enquanto que em RHH, rendimentos de 0,48 e 0,44 foram obtidos, respectivamente. Novas estratégias de produção de etanol a partir de hidrolisado de casca de arroz também foram testadas, como a sacarificação e co-fermentação simultânea por S. cerevisiae, Spathaspora arborariae e pela combinação destas leveduras. Nas culturas sob limitação de oxigênio, S. cerevisiae foi capaz de metabolizar a glicose presente RHH, resultando em um rendimento de etanol (YP/S) de 0,45. A co-cultura de S. cerevisiae e S. arborariae foi capaz de metabolizar pentoses e hexoses presentes em RHH, obtendo YP/S de 0,48 g g -1 e rendimento de xilitol (YX/X ) de 0,39 g g -1 e com o uso de sacarificação e co-fermentação simultânea produziu-se 14,5 e 3 g L-1 de etanol e xilitol, respectivamente. No hidrolisado de casca de soja (SHH), testou-se a capacidade das celulases provenientes do fungo Penicillium echinulatum S1M29, em aumentar a quantidade de açúcares no meio de hidrolisado. O rendimento de sacarificação foi de 72 %, quando foi utilizado 15 FPU g-1 de matéria seca, incubado num agitador orbital a 120 rpm, 50 ºC durante 96 h. Após a sacarificação, a capacidade das células imobilizadas de S. cerevisiae, C. shehatae, S. arborariae, ou a combinação de C. shehatae, S. arborariae com S. cerevisiae, para a conversão de açúcares presentes em SHH como substrato para a produção de etanol foi estudada. Os melhores coeficientes de rendimento de etanol (YP/S) foram de 0,45, 0,47 e 0,38, utilizando culturas puras de S. cerevisiae, C. shehatae, e S. arborariae respectivamente, e YP/S de 0,48 e 0,40 g g -1, para co-culturas de S. cerevisiae e C. shehatae ou S. arborariae, respectivamente. As leveduras com os melhores rendimentos de etanol (S. cerevisiae e C. shehatae) tiveram seu metabolismo testado em biorreatores imobilizados. Estas culturas em biorreatores produziram um rendimento do etanol de 0,49, para S. cerevisiae e 0,41 g g -1 usando C. shehatae. Visando a melhora do processo de fermentação do hidrolisado de casca de soja (HCS), realizaram-se experimentos estatísticos (Plackett-Burman e CCD), para diferentes condições operacionais e formulações do meio. Com o Plackett-Burman testou-se os efeitos da suplementação com quatro nutrientes (peptona, extrato de levedura, milhocina e Tween 80). Através do planejamento fatorial composto central (CCD) com quatro repetições no ponto central e seis pontos axiais, analisou-se os efeitos das condições de fermentação (temperatura, pH e tamanho do inóculo) para a produção de etanol por C . guilliermondii. Os resultados demonstraram que nenhuma suplementação do meio foi necessária, sendo C. guilliermondii capaz de crescer em hidrolisado não-suplementado e não-desintoxicado. As melhores condições de cultura foram determinadas pelo CCD como sendo de 28 °C, pH 5.0, e 109 UFC ml-1 de tamanho do inóculo, respectivamente. O coeficiente de produtividade de etanol atingiu um máximo de 1,4 g L-1 h-1 cerca de 80 % do rendimento teórico esperado, resultando em um coeficiente de rendimento de etanol (YP/S) de 0,41 g g-1.The lignocellulosic agroindustrial residues such as rice hull and soybean hull are abundant and inexpensive wastes and can be used in biotechnological production of high value-added compounds such as ethanol and xylitol, like sources of cellulose and hemicellulose. In this paper was tested the ability of converting sugars from these wastes by different yeasts, using the knowledge about the biotechnological production of alcohols. The ability of Candida shehatae, Saccharomyces cerevisiae, or the combination of these two yeasts in converting the mixed sugar composition of rice hull hydrolysate (RHH) as substrate for ethanol production is presented. In shake flask experiments, co-cultures showed ethanol yields (YP/S) of 0.42 and 0.51 in synthetic medium simulating the sugar composition of RHH and in RHH, respectively, with both glucose and xylose being completely depleted, while pure cultures of C. shehatae produced slightly lower ethanol yields (0.40). Experiments were scaled-up to bioreactors, in which anaerobiosis and oxygen limitation conditions were tested. Bioreactor co-cultures produced similar ethanol yields in both conditions (0.50-0.51) in synthetic medium, while in RHH, yields of 0.48 and 0.44 were obtained, respectively. New technologies to produce ethanol from RHH were tested, with the simultaneous saccharification and co-fermentation by S. cerevisiae, Spathaspora arborariae and the combination of these yeasts. In bioreactor cultures under oxygen limitation, S. cerevisiae was capable of metabolizing glucose from RHH, which contained small amounts of acetic acid, furfural, and hydroxymethylfurfural, achieving ethanol yields of 0.45. In the co-culture of S. cerevisiae and S. arborariae pentoses and hexoses from RHH, were converted to ethanol and xylitol, with yields of 0.48 and 0.39, and using simultaneous saccharification and co-fermentation with both yeasts produced ethanol and xylitol to final concentrations of 14.5 g L-1 and 3 g L-1, respectively. In soybean hull hydrolysate (SHH), was studied the ability of cellulase from Penicillium echinulatum S1M29, to increase the amount of sugars in the hydrolysate medium. The saccharification yield was 72 % using 15 FPU g-1 dry matter on orbital shaker at 120 rpm, 50 °C for 96 h. After saccharification, the ability of immobilized cells of S. cerevisiae, C. shehatae, S. arborariae, or a combination of C. shehatae, S. arborariae with S. cerevisiae for the conversion of sugars present in SHH as a substrate for ethanol production was studied. In shaker cultivations, the bioconversion of SHH into ethanol showed yields (YP/S) of 0.43, 0.47, and 0.38, in cultures of S. cerevisiae, C. shehatae, and S.arborariae, respectively. Co-cultures of S. cerevisiae and C. shehatae or S. cerevisiae and S. arborariae, produced YP/S of 0.48 and 0.40, respectively. S. cerevisiae and C.shehatae were immobilized in Ca-alginate and cultivated in bioreactors to analyse the possibility of scaling up this process. Immobilized-cell cultures showed yields of 0.45 and 0.38, respectively. Aiming to improve the fermentation of soybean hull hydrolysate (HCS), operational conditions and medium formulation were optimized using statistical experimental designs (Plackett-Burman and CCD). Plackett-Burman was used to analysate the effects of supplementation with four nutrients (peptone, yeast extract, corn steep liquor and Tween 80). Using factorial central composite design (CCD) with four replications at the center point and six axial points, was examined the effects of fermentation conditions (temperature, pH, and inoculum size) for ethanol production by Candida guilliermondii BL13. Results showed that C. guilliermondii was capable of growing in non-supplemented, non-detoxified hydrolysate, and the best culture conditions were determined to be 28 °C, pH 5.0, and 109 CFU mL-1 inoculum size, respectively. Ethanol productivity peaked at 1.4 g L-1 h-1 and yields of 0.41 g g-1, about 80 % of expected theoretical yields, were observed

    Production of Polyhydroxyalkanoates by Bacillus megaterium: Prospecting on Rice Hull and Residual Glycerol Potential

    No full text
    The production of polyhydroxyalkanoates (PHAs) by Bacillus megaterium using industrial residues, crude glycerol from biodiesel synthesis and rice hull hydrolysate (RHH), as low-cost carbon sources was investigated. The experiments were conducted by shaking flasks at 30 °C and 180 rpm up to 72 h. The extraction of PHA was carried out using sodium hypochlorite to make its recovery more environmentally friendly by avoiding organic solvents (chloroform). The yields of PHA varied depending on the extraction method. A total of 33.3% (w·w−1) (mixing chloroform: sodium hypochlorite) and 52.5% (w·w−1) (sodium hypochlorite only) were obtained using glycerol and glucose as a carbon source, respectively. Preliminary experiments using RHH as a carbon source Indicated a yield of PHA of 11% (w·w−1) (chloroform). The PHA produced had thermal properties, such as transition temperature, similar to the commercial polyhydroxybutyrate (PHB)
    corecore