53 research outputs found

    Robust acinar cell transgene expression of CreErT via BAC recombineering

    Full text link
    Pancreatic acinar cells are critical in gastrointestinal physiology and pancreatitis and may be involved in pancreatic cancer. Previously, a short rat pancreatic elastase promoter has been widely utilized to control acinar cell transgene expression. However, this partial sequence does not confer robust and stable expression. In this study, we tested the hypothesis that a transgene employing bacterial-artificial-chromosome (BAC) technology to express a tamoxifen-regulated Cre recombinase from a full-length mouse elastase gene (BAC-Ela-CreErT) would be more robust and stable. When founders were crossed with Rosa26 reporter mice nearly 100% of acini expressed Β-galactosidase after tamoxifen treatment. The expression was specific for pancreatic acinar cells and these characteristics have remained stable for 2 years. However, because of high levels of expression in differentiated acinar cells, this construct is tamoxifen independent in ∼50% of adult acinar cells. This model of pancreatic acinar specific Cre expression is a powerful tool for future transgenic and knockout studies. genesis 46:390–395, 2008. © 2008 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/60895/1/20411_ftp.pd

    Ubiquitin Ligase RNF146 Regulates Tankyrase and Axin to Promote Wnt Signaling

    Get PDF
    Canonical Wnt signaling is controlled intracellularly by the level of β-catenin protein, which is dependent on Axin scaffolding of a complex that phosphorylates β-catenin to target it for ubiquitylation and proteasomal degradation. This function of Axin is counteracted through relocalization of Axin protein to the Wnt receptor complex to allow for ligand-activated Wnt signaling. AXIN1 and AXIN2 protein levels are regulated by tankyrase-mediated poly(ADP-ribosyl)ation (PARsylation), which destabilizes Axin and promotes signaling. Mechanistically, how tankyrase limits Axin protein accumulation, and how tankyrase levels and activity are regulated for this function, are currently under investigation. By RNAi screening, we identified the RNF146 RING-type ubiquitin E3 ligase as a positive regulator of Wnt signaling that operates with tankyrase to maintain low steady-state levels of Axin proteins. RNF146 also destabilizes tankyrases TNKS1 and TNKS2 proteins and, in a reciprocal relationship, tankyrase activity reduces RNF146 protein levels. We show that RNF146, tankyrase, and Axin form a protein complex, and that RNF146 mediates ubiquitylation of all three proteins to target them for proteasomal degradation. RNF146 is a cytoplasmic protein that also prevents tankyrase protein aggregation at a centrosomal location. Tankyrase auto-PARsylation and PARsylation of Axin is known to lead to proteasome-mediated degradation of these proteins, and we demonstrate that, through ubiquitylation, RNF146 mediates this process to regulate Wnt signaling

    New insights regarding HCV-NS5A structure/function and indication of genotypic differences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HCV is prevalent throughout the world. It is a major cause of chronic liver disease. There is no effective vaccine and the most common therapy, based on Peginterferon, has a success rate of ~50%. The mechanisms underlying viral resistance have not been elucidated but it has been suggested that both host and virus contribute to therapy outcome. Non-structural 5A (NS5A) protein, a critical virus component, is involved in cellular and viral processes.</p> <p>Methods</p> <p>The present study analyzed structural and functional features of 345 sequences of HCV-NS5A genotypes 1 or 3, using <it>in silico </it>tools.</p> <p>Results</p> <p>There was residue type composition and secondary structure differences between the genotypes. In addition, second structural variance were statistical different for each response group in genotype 3. A motif search indicated conserved glycosylation, phosphorylation and myristoylation sites that could be important in structural stabilization and function. Furthermore, a highly conserved integrin ligation site was identified, and could be linked to nuclear forms of NS5A. ProtFun indicated NS5A to have diverse enzymatic and nonenzymatic activities, participating in a great range of cell functions, with statistical difference between genotypes.</p> <p>Conclusion</p> <p>This study presents new insights into the HCV-NS5A. It is the first study that using bioinformatics tools, suggests differences between genotypes and response to therapy that can be related to NS5A protein features. Therefore, it emphasizes the importance of using bioinformatics tools in viral studies. Data acquired herein will aid in clarifying the structure/function of this protein and in the development of antiviral agents.</p

    Genome of Herbaspirillum seropedicae Strain SmR1, a Specialized Diazotrophic Endophyte of Tropical Grasses

    Get PDF
    The molecular mechanisms of plant recognition, colonization, and nutrient exchange between diazotrophic endophytes and plants are scarcely known. Herbaspirillum seropedicae is an endophytic bacterium capable of colonizing intercellular spaces of grasses such as rice and sugar cane. The genome of H. seropedicae strain SmR1 was sequenced and annotated by The Paraná State Genome Programme—GENOPAR. The genome is composed of a circular chromosome of 5,513,887 bp and contains a total of 4,804 genes. The genome sequence revealed that H. seropedicae is a highly versatile microorganism with capacity to metabolize a wide range of carbon and nitrogen sources and with possession of four distinct terminal oxidases. The genome contains a multitude of protein secretion systems, including type I, type II, type III, type V, and type VI secretion systems, and type IV pili, suggesting a high potential to interact with host plants. H. seropedicae is able to synthesize indole acetic acid as reflected by the four IAA biosynthetic pathways present. A gene coding for ACC deaminase, which may be involved in modulating the associated plant ethylene-signaling pathway, is also present. Genes for hemagglutinins/hemolysins/adhesins were found and may play a role in plant cell surface adhesion. These features may endow H. seropedicae with the ability to establish an endophytic life-style in a large number of plant species

    Ras Activity Levels Control the Development of Pancreatic Diseases

    Get PDF
    Differentiated pancreatic acinar cells expressing endogenous levels of mutant K-Ras do not spontaneously develop pancreatic ductal adenocarcinoma (PDAC). However, we hypothesized that acinar cells would develop PDAC in the presence of Ras activity levels mimicking those of human tumor cells.We measured Ras activity in PDAC cells from mice and humans using a Raf pull-down assay. We compared the effects of acinar cell expression of mutant K-Ras at endogenous and elevated levels on Ras activity and on the development of PDAC

    Bioactivity and health effects of garlic essential oil: A review

    No full text
    Abstract Garlic (Allium sativum L.), the underground bulb of the Allium plant in the family Liliaceae, is a common and popular spice that has historically been used to prevent and treat many different diseases such as pain, deafness, diarrhea, tumors, and other healthy problems. Garlic essential oil contains a variety of organosulfur compounds, such as the most representative diallyl disulfides (DADS) and diallyl trisulfides (DATS), which have attracted great interest in medicine, food, and agriculture because of their rich biological activities. This paper reviews the research progress on the composition and bioactivities of garlic essential oil mixtures and the bioactivity of some typical monomeric sulfides in garlic essential oil. The active mechanisms of representative sulfides in garlic essential oil were analyzed, and the applications of garlic essential oil in functional food, food additives, and clinical treatment were discussed. Combined with the current research status, the limitations and development direction of garlic essential oil in the study of molecular mechanism were discussed, which is of great significance to the development of garlic essential oil as a natural and safe alternative medicine for treatment
    corecore