8 research outputs found

    Mudd’s disease (MAT I/III deficiency): a survey of data for MAT1A homozygotes and compound heterozygotes

    Full text link

    Detection of bacterial pathogens in synovial and pleural fluid with the FilmArray Blood Culture Identification System

    Get PDF
    We report the use of FilmArray Blood Culture Identification (BCID) multiplex PCR system for pathogen detection from a child with septic arthritis that Streptococcus pyogenes was identified directly from synovial fluid and a child with complicated pneumonia with pleural effusion that Streptococcus pneumoniae was identified from pleural fluid

    Molecular and clinical characterization of a series of patients with childhood-onset lysosomal acid lipase deficiency. Retrospective investigations, follow-up and detection of two novel LIPA pathogenic variants

    No full text
    Background and aims Childhood/Adult-onset Lysosomal Acid Lipase Deficiency (LAL-D) is a recessive disorder due to loss of function variants of LAL, the enzyme which hydrolyses cholesteryl esters, derived from internalized apoB containing lipoproteins. The disease is characterized by multi-organ involvement including the liver, spleen, intestine and cardiovascular system. The aim of this study was the clinical and molecular characterization of 14 (13 unrelated) previously unreported patients with childhood-onset LAL-D. Methods Data collected included clinical and laboratory investigations, liver imaging, liver biopsy and LIPA gene analysis. The response to lipid-lowering medications, liver transplantation and enzyme replacement therapy (ERT) was reported for some patients. Results LAL-D was suspected at 4.4 \uc2\ub1 3.3 years of age for the presence of hepatomegaly, elevated serum transaminases and hypercholesterolemia, and was confirmed by liver biopsy/imaging and LAL assay. The follow up period ranged from 3 to 40 years (mean 7.8 \uc2\ub1 4.0 years in 13 cases). Patients treated with statins with or without ezetimibe showed 28% reduction of plasma LDL-cholesterol without a tangible effect on liver enzymes; some patients receiving ERT showed normalized lipoprotein profile and transaminase levels. The common c.894G > A variant was observed in homozygosity or compound heterozygosity in 10 patients. We found seven previously reported variants: p.(Trp140*), p.(Arg218*), p.(Gly266*), p.(Thr288Ile), p.(Leu294Ser), p.(His295Tyr) and p.(Gly342Arg) and two novel variants: p.(Asp345Asn), affecting the LAL catalytic triad, and c.229+3A > C, affecting splicing. Homozygosity for p.(Thr288Ile) or c.229+3A > C was associated with a severe phenotype. Conclusions This study provides additional data on the features of childhood-onset LAL-D and describes two novel pathogenic variants of the LIPA gene

    Mudd's disease (MAT I/III deficiency) : a survey of data for MAT1A homozygotes and compound heterozygotes

    No full text
    Background: This paper summarizes the results of a group effort to bring together the worldwide available data on patients who are either homozygotes or compound heterozygotes for mutations in MAT1A. MAT1A encodes the subunit that forms two methionine adenosyltransferase isoenzymes, tetrameric MAT I and dimeric MAT III, that catalyze the conversion of methionine and ATP to S-adenosylmethionine (AdoMet). Subnormal MAT I/III activity leads to hypermethioninemia. Individuals, with hypermethioninemia due to one of the MAT1A mutations that in heterozygotes cause relatively mild and clinically benign hypermethioninemia are currently often being flagged in screening programs measuring methionine elevation to identify newborns with defective cystathionine beta-synthase activity. Homozygotes or compound heterozygotes for MAT1A mutations are less frequent. Some but not all, such individuals have manifested demyelination or other CNS abnormalities. Purpose of the study: The goals of the present effort have been to determine the frequency of such abnormalities, to find how best to predict whether they will occur, and to evaluate the outcomes of the variety of treatment regimens that have been used. Data have been gathered for 64 patients, of whom 32 have some evidence of CNS abnormalities (based mainly on MRI findings), and 32 do not have such evidence. Results and Discussion: The results show that mean plasma methionine concentrations provide the best indication of the group into which a given patient will fall: those with means of 800 mu M or higher usually have evidence of CNS abnormalities, whereas those with lower means usually do not. Data are reported for individual patients for MAT1A genotypes, plasma methionine, total homocysteine (tHcy), and AdoMet concentrations, liver function studies, results of 15 pregnancies, and the outcomes of dietary methionine restriction and/or AdoMet supplementation. Possible pathophysiological mechanisms that might contribute to CNS damage are discussed, and tentative suggestions are put forth as to optimal management

    Mudd’s disease (MAT I/III deficiency): a survey of data for MAT1A homozygotes and compound heterozygotes

    No full text
    Background: This paper summarizes the results of a group effort to bring together the worldwide available data on patients who are either homozygotes or compound heterozygotes for mutations in MAT1A. MAT1A encodes the subunit that forms two methionine adenosyltransferase isoenzymes, tetrameric MAT I and dimeric MAT III, that catalyze the conversion of methionine and ATP to S-adenosylmethionine (AdoMet). Subnormal MAT I/III activity leads to hypermethioninemia. Individuals, with hypermethioninemia due to one of the MAT1A mutations that in heterozygotes cause relatively mild and clinically benign hypermethioninemia are currently often being flagged in screening programs measuring methionine elevation to identify newborns with defective cystathionine β-synthase activity. Homozygotes or compound heterozygotes for MAT1A mutations are less frequent. Some but not all, such individuals have manifested demyelination or other CNS abnormalities. Purpose of the study The goals of the present effort have been to determine the frequency of such abnormalities, to find how best to predict whether they will occur, and to evaluate the outcomes of the variety of treatment regimens that have been used. Data have been gathered for 64 patients, of whom 32 have some evidence of CNS abnormalities (based mainly on MRI findings), and 32 do not have such evidence. Results and Discussion The results show that mean plasma methionine concentrations provide the best indication of the group into which a given patient will fall: those with means of 800 μM or higher usually have evidence of CNS abnormalities, whereas those with lower means usually do not. Data are reported for individual patients for MAT1A genotypes, plasma methionine, total homocysteine (tHcy), and AdoMet concentrations, liver function studies, results of 15 pregnancies, and the outcomes of dietary methionine restriction and/or AdoMet supplementation. Possible pathophysiological mechanisms that might contribute to CNS damage are discussed, and tentative suggestions are put forth as to optimal management

    Mudd's disease (MAT I/III deficiency) : a survey of data for MAT1A homozygotes and compound heterozygotes

    No full text
    Background: This paper summarizes the results of a group effort to bring together the worldwide available data on patients who are either homozygotes or compound heterozygotes for mutations in MAT1A. MAT1A encodes the subunit that forms two methionine adenosyltransferase isoenzymes, tetrameric MAT I and dimeric MAT III, that catalyze the conversion of methionine and ATP to S-adenosylmethionine (AdoMet). Subnormal MAT I/III activity leads to hypermethioninemia. Individuals, with hypermethioninemia due to one of the MAT1A mutations that in heterozygotes cause relatively mild and clinically benign hypermethioninemia are currently often being flagged in screening programs measuring methionine elevation to identify newborns with defective cystathionine beta-synthase activity. Homozygotes or compound heterozygotes for MAT1A mutations are less frequent. Some but not all, such individuals have manifested demyelination or other CNS abnormalities. Purpose of the study: The goals of the present effort have been to determine the frequency of such abnormalities, to find how best to predict whether they will occur, and to evaluate the outcomes of the variety of treatment regimens that have been used. Data have been gathered for 64 patients, of whom 32 have some evidence of CNS abnormalities (based mainly on MRI findings), and 32 do not have such evidence. Results and Discussion: The results show that mean plasma methionine concentrations provide the best indication of the group into which a given patient will fall: those with means of 800 mu M or higher usually have evidence of CNS abnormalities, whereas those with lower means usually do not. Data are reported for individual patients for MAT1A genotypes, plasma methionine, total homocysteine (tHcy), and AdoMet concentrations, liver function studies, results of 15 pregnancies, and the outcomes of dietary methionine restriction and/or AdoMet supplementation. Possible pathophysiological mechanisms that might contribute to CNS damage are discussed, and tentative suggestions are put forth as to optimal management
    corecore