27 research outputs found

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Relevance of N-terminal residues for amyloid-β binding to platelet integrin α IIb β 3 , integrin outside-in signaling and amyloid-β fibril formation

    No full text
    A pathological hallmark of Alzheimer's disease (AD) is the aggregation of amyloid-β peptides (Aβ) into fibrils, leading to deposits in cerebral parenchyma and vessels known as cerebral amyloid angiopathy (CAA). Platelets are major players of hemostasis but are also implicated in AD. Recently we provided strong evidence for a direct contribution of platelets to AD pathology. We found that monomeric Aβ40 binds through its RHDS sequence to integrin αIIbβ3, and promotes the formation of fibrillar Aβ aggregates by the secretion of adenosine diphosphate (ADP) and the chaperone protein clusterin (CLU) from platelets. Here we investigated the molecular mechanisms of Aβ binding to integrin αIIbβ3 by using Aβ11 and Aβ16 peptides. These peptides include the RHDS binding motif important for integrin binding but lack the central hydrophobic core and the C-terminal sequence of Aβ. We observed platelet adhesion to truncated N-terminal Aβ11 and Aβ16 peptides that was not mediated by integrin αIIbβ3. Thus, no integrin outside-in signaling and reduced CLU release was detected. Accordingly, platelet mediated Aβ fibril formation was not observed. Taken together, the RHDS motif of Aβ is not sufficient for Aβ binding to platelet integrin αIIbβ3 and platelet mediated Aβ fibril formation but requires other recognition or binding motifs important for platelet mediated processes in CAA. Thus, increased understanding of the molecular mechanisms of Aβ binding to platelet integrin αIIbβ3 is important to understand the role of platelets in amyloid pathology

    Impact of Amyloid-β on Platelet Mitochondrial Function and Platelet–Mediated Amyloid Aggregation in Alzheimer’s Disease

    No full text
    Background: Alzheimer’s disease (AD) is characterized by an accumulation of amyloid β (Aβ) peptides in the brain and mitochondrial dysfunction. Platelet activation is enhanced in AD and platelets contribute to AD pathology by their ability to facilitate soluble Aβ to form Aβ aggregates. Thus, anti-platelet therapy reduces the formation of cerebral amyloid angiopathy in AD transgenic mice. Platelet mitochondrial dysfunction plays a regulatory role in thrombotic response, but its significance in AD is unknown and explored herein. Methods: The effects of Aβ-mediated mitochondrial dysfunction in platelets were investigated in vitro. Results: Aβ40 stimulation of human platelets led to elevated reactive oxygen species (ROS) and superoxide production, while reduced mitochondrial membrane potential and oxygen consumption rate. Enhanced mitochondrial dysfunction triggered platelet-mediated Aβ40 aggregate formation through GPVI-mediated ROS production, leading to enhanced integrin αIIbβ3 activation during synergistic stimulation from ADP and Aβ40. Aβ40 aggregate formation of human and murine (APP23) platelets were comparable to controls and could be reduced by the antioxidant vitamin C. Conclusions: Mitochondrial dysfunction contributes to platelet-mediated Aβ aggregate formation and might be a promising target to limit platelet activation exaggerated pathological manifestations in AD

    Cryo-EM of Aβ Fibrils from Mouse Models find tg-APPArcSwe fibrils resemble those found in sporadic Alzheimer's disease patients

    No full text
    The use of transgenic mice displaying amyloid-β (Aβ) brain pathology has been essential for the preclinical assessment of new treatment strategies for Alzheimer's disease. However, the properties of Aβ in such mice have not been systematically compared to Aβ in the brains of patients with Alzheimer's disease. Here, we determined the structures of nine ex vivo Aβ fibrils from six different mouse models by cryogenic-electron microscopy. We found novel Aβ fibril structures in the APP/PS1, ARTE10 and tg-SwDI models, whereas the human type II filament fold was found in the ARTE10, tg-APPSwe and APP23 models. The tg-APPArcSwe mice showed an Aβ fibril whose structure resembles the human type I filament found in patients with sporadic Alzheimer's disease. A detailed assessment of the Aβ fibril structure is key to the selection of adequate mouse models for the preclinical development of novel plaque-targeting therapeutics and positron emission tomography imaging tracers in Alzheimer's disease
    corecore