442 research outputs found

    Midlatitude Cirrus Cloud Structural Properties Analyzed From The Extended Facility For Atmospheric Remote Sensing Dataset

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2004The knowledge on cirrus inhomogeneous structural properties is important not only in radiation calculations, but also in deeply understanding the dynamics mechanism including the formation, development, and dissipation of cirrus clouds. The midlatitude cirrus inhomogeneous structural properties have been evaluated by analyzing the 10-year high cloud datasets obtained at the University of Utah, Facility for Atmospheric Remote Sensing in Salt Lake City, UT. Three goals have been reached in this research. First, the means to analyze lidar data using wavelet analysis, an advanced approach to obtain information on the structure of cirrus clouds, has been successfully developed. And then, typical cirrus structures including Kelvin-Helmholtz instabilities, cirrus mammata, and the uncinus cells have been analyzed by case studies and statistical survey. Their dynamical mechanisms, environmental characteristics, and vertical and horizontal length scale have been studied. Thirdly, using the method based on the wavelet transform and other methods, a climatology of midlatitude cirrus horizontal inhomogeneous properties is developed from the FARS lidar backscattered power data, the proxies of real cirrus clouds

    Development of high speed video imaging as a process analytical technology (PAT) tool

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Increasing external effects negate local efforts to control ozone air pollution: a case study of Hong Kong and implications for other Chinese cities.

    Get PDF
    It is challenging to reduce ground-level ozone (O3) pollution at a given locale, due in part to the contributions of both local and distant sources. We present direct evidence that the increasing regional effects have negated local control efforts for O3 pollution in Hong Kong over the past decade, by analyzing the daily maximum 8 h average O3 and Ox (=O3+NO2) concentrations observed during the high O3 season (September-November) at Air Quality Monitoring Stations. The locally produced Ox showed a statistically significant decreasing trend over 2002-2013 in Hong Kong. Analysis by an observation-based model confirms this decline in in situ Ox production, which is attributable to a reduction in aromatic hydrocarbons. However, the regional background Ox transported into Hong Kong has increased more significantly during the same period, reflecting contributions from southern/eastern China. The combined result is a rise in O3 and a nondecrease in Ox. This study highlights the urgent need for close cross-boundary cooperation to mitigate the O3 problem in Hong Kong. China's air pollution control policy applies primarily to its large cities, with little attention to developing areas elsewhere. The experience of Hong Kong suggests that this control policy does not effectively address secondary pollution, and that a coordinated multiregional program is required

    Computer Forensics Model Based on Evidence Ring and Evidence Chain

    Get PDF
    AbstractIn recent years, with the development of technology, judicial practice involving electronic crime is frequent. To combat this crime, computer forensics bears the irreplaceable role. This is a combination science of law and computer, but there is a “mismatch” phenomenon exists on the research on computer forensics currently, most of them only study the technical aspects of computer or electronic evidence related to legal issues, the two studies combined less. To solve this problem, in this paper, evidence of the general attributes: objectivity, relevance, legitimacy as a criterion to build a computer forensics model based on ring and chain of evidence. In this model, forensic evidence of links forms a ring, in accordance with the forensic to form chain of evidence. In order to ensure the objectivity, legitimacy of evidence, in building a chain of evidence and evidence ring as well as a supervisory chain in supervision, the final forms a electronic evidence forensics system

    Effects of turbulence-chemistry interactions on auto-ignition and flame structure for n-dodecane spray combustion

    Get PDF
    The Engine Combustion Network (ECN) spray A under diesel engine conditions is investigated with a non-adiabatic 5D Flamelet Generated Manifolds (FGM) model with the consideration of detailed chemical kinetic mechanisms. The enthalpy deficit due to droplet vapourisation is considered by employing an additional controlling parameter in the FGM library. In this FGM model, ß-PDF is used for the PDF integration over the control variable space. Validation results in non-reacting conditions indicate relatively good agreement between the predicted and experimental data in terms of liquid and vapour penetrations and mixture fraction spatial distribution. In reacting conditions, the effects of variance of mixture fraction and progress variable were examined. The ignition delay time and the quasi-steady flame structure are both affected by the variances. The variance of mixture fraction delays the ignition process and the variance of progress variable accelerates it. For mixture fraction, the ignition process is quicker at any stage in the case of neglecting variance. While things are more complex for progress variable, the ignition process is advanced in the case of neglecting variance at early times, but surpassed by the case of ß-PDF later and until auto-ignition. When variance of mixture fraction is considered, the OH mass fraction shows a wide spatial distribution. While if not, a very thin flame is observed with a higher peak in OH, and a very large lift-off length. The variance of progress variable has little impact on the global flame structure, but makes the flame lift-off length much shorter. This study confirms the general observation, that the variance of mixture fraction is of higher importance in high temperature non-premixed combustion, however, we found that the variance of progress variable is far from negligible.This work was supported by Major Research Plan of the National Natural Sci-ence Foundation of China (No. 91541205); National Natural Science Foundation of China [grant numbers 51876140]; the project of National Key R&D Program of China (2017YFE0102800); This project has also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No. 713673. Ambrus Both has received financial support through the ”la Caixa” INPhINIT Fellowship Grant for Doctoral studies at Spanish Research Centres of Excellence, ”la Caixa” Banking Foundation, Barcelona, Spain.Peer ReviewedPostprint (author's final draft

    Nighttime chemistry at a high altitude site above Hong Kong

    Get PDF
    Nighttime reactions of nitrogen oxides influence ozone, volatile organic compounds, and aerosol and are thus important to the understanding of regional air quality. Despite large emissions and rapid recent growth of nitrogen oxide concentrations, there are few studies of nighttime chemistry in China. Here we present measurements of nighttime nitrogen oxides, NO3 and N2O5, from a coastal mountaintop site in Hong Kong adjacent to the megacities of the Pearl River Delta region. This is the first study of nighttime chemistry from a site within the residual layer in China. Key findings include the following. First, highly concentrated urban NOx outflow from the Pearl River Delta region was sampled infrequently at night, with N2O5 mixing ratios up to 8 ppbv (1 min average) or 12 ppbv (1 s average) in nighttime aged air masses. Second, the average N2O5 uptake coefficient was determined from a best fit to the available steady state lifetime data as γ(N2O5) = 0.014 ± 0.007. Although this determination is uncertain due to the difficulty of separating N2O5 losses from those of NO3, this value is in the range of previous residual layer determinations of N2O5 uptake coefficients in polluted air in North America. Third, there was a significant contribution of biogenic hydrocarbons to NO3 loss inferred from canister samples taken during daytime. Finally, daytime N2O5 mixing ratios were in accord with their predicted photochemical steady state. Heterogeneous uptake of N2O5 in fog is determined to be an important production mechanism for soluble nitrate, even during daytime. Key Points Large (up to 12 ppbv N2O5) but infrequent nocturnal NOx outflow from the Pearl River Delta Average N2O5 uptake coefficients 0.014 ± 0.007, in line with residual layer measurements in the U.S. Daytime N2O5 follows predicted steady state but rapidly produces soluble nitrate in fog.Department of Civil and Environmental Engineerin

    A distributed anomaly detection system for in-vehicle network using HTM

    Get PDF
    With the development of 5G and Internet of Vehicles technology, the possibility of remote wireless attack on an in-vehicle network has been proven by security researchers. Anomaly detection technology can effectively alleviate the security threat, as the first line of security defense. Based on this, this paper proposes a distributed anomaly detection system using hierarchical temporal memory (HTM) to enhance the security of a vehicular controller area network bus. The HTM model can predict the flow data in real time, which depends on the state of the previous learning. In addition, we improved the abnormal score mechanism to evaluate the prediction. We manually synthesized field modification and replay attack in data field. Compared with recurrent neural networks and hidden Markov model detection models, the results show that the distributed anomaly detection system based on HTM networks achieves better performance in the area under receiver operating characteristic curve score, precision, and recall

    On the use of an explicit chemical mechanism to dissect peroxy acetyl nitrate formation.

    Get PDF
    Peroxy acetyl nitrate (PAN) is a key component of photochemical smog and plays an important role in atmospheric chemistry. Though it has been known that PAN is produced via reactions of nitrogen oxides (NOx) with some volatile organic compounds (VOCs), it is difficult to quantify the contributions of individual precursor species. Here we use an explicit photochemical model--Master Chemical Mechanism (MCM) model--to dissect PAN formation and identify principal precursors, by analyzing measurements made in Beijing in summer 2008. PAN production was sensitive to both NOx and VOCs. Isoprene was the predominant VOC precursor at suburb with biogenic impact, whilst anthropogenic hydrocarbons dominated at downtown. PAN production was attributable to a relatively small class of compounds including NOx, xylenes, trimethylbenzenes, trans/cis-2-butenes, toluene, and propene. MCM can advance understanding of PAN photochemistry to a species level, and provide more relevant recommendations for mitigating photochemical pollution in large cities
    corecore