16 research outputs found

    Colitis is associated with loss of LHPP and up-regulation of histidine phosphorylation in intestinal epithelial cells

    Get PDF
    Protein histidine phosphorylation (pHis) is a posttranslational modification involved in cell cycle regulation, ion channel activity and phagocytosis (1). Using novel monoclonal antibodies to detect pHis (2), we recently reported that loss of the histidine phosphatase LHPP results in elevated pHis levels in hepatocellular carcinoma (3). Here, we show that intestinal inflammation correlates with loss of LHPP, in DSS-treated mice and in inflammatory bowel disease (IBD) patients. Increased histidine phosphorylation was observed in intestinal epithelial cells (IECs), as determined by pHis immunofluorescence staining of colon samples from a colitis mouse model. However, ablation of Lhpp did not cause increased pHis or promote intestinal inflammation in physiological conditions or after DSS treatment. Our observations suggest that increased histidine phosphorylation plays a role in colitis, but loss of LHPP is not sufficient to increase pHis or to cause inflammation in the intestine

    Loss of TSC complex enhances gluconeogenesis via upregulation of Dlk1-Dio3 locus miRNAs

    Get PDF
    Loss of the tumor suppressor tuberous sclerosis complex 1 (Tsc1) in the liver promotes gluconeogenesis and glucose intolerance. We asked whether this could be attributed to aberrant expression of small RNAs. We performed small-RNA sequencing on liver of Tsc1-knockout mice, and found that miRNAs of the delta-like homolog 1 (Dlk1)-deiodinase iodothyronine type III (Dio3) locus are up-regulated in an mTORC1-dependent manner. Sustained mTORC1 signaling during development prevented CpG methylation and silencing of the Dlk1-Dio3 locus, thereby increasing miRNA transcription. Deletion of miRNAs encoded by the Dlk1-Dio3 locus reduced gluconeogenesis, glucose intolerance, and fasting blood glucose levels. Thus, miRNAs contribute to the metabolic effects observed upon loss of TSC1 and hyperactivation of mTORC1 in the liver. Furthermore, we show that miRNA is a downstream effector of hyperactive mTORC1 signaling

    The initiator methionine tRNA drives cell migration and invasion leading to increased metastatic potential in melanoma

    Get PDF
    The cell's repertoire of transfer RNAs (tRNAs) has been linked to cancer. Recently, levels of the initiator methionine tRNA (tRNAiMet) in stromal fibroblasts have been shown to influence extracellular matrix (ECM) secretion to drive tumour growth and angiogenesis. Here we show that increased tRNAiMet within cancer cells does not influence tumour growth, but drives cell migration and invasion via a mechanism that is independent from ECM synthesis and dependent on α5β1 integrin and levels of the translation initiation ternary complex. In vivo and ex vivo migration (but not proliferation) of melanoblasts is significantly enhanced in transgenic mice which express additional copies of the tRNAiMet gene. We show that increased tRNAiMet in melanoma drives migratory, invasive behaviour and metastatic potential without affecting cell proliferation and primary tumour growth, and that expression of RNA polymerase III-associated genes (which drive tRNA expression) are elevated in metastases by comparison with primary tumours. Thus specific alterations to the cancer cell tRNA repertoire drive a migration/invasion programme that may lead to metastasis

    BRF1 accelerates prostate tumourigenesis and perturbs immune infiltration

    Get PDF
    BRF1 is a rate-limiting factor for RNA Polymerase III-mediated transcription and is elevated in numerous cancers. Here, we report that elevated levels of BRF1 associate with poor prognosis in human prostate cancer. In vitro studies in human prostate cancer cell lines demonstrated that transient overexpression of BRF1 increased cell proliferation whereas the transient downregulation of BRF1 reduced proliferation and mediated cell cycle arrest. Consistent with our clinical observations, BRF1 overexpression in a Pten-deficient mouse (Pten BRF1 ) prostate cancer model accelerated prostate carcinogenesis and shortened survival. In Pten BRF1 tumours, immune and inflammatory processes were altered, with reduced tumoral infiltration of neutrophils and CD4 positive T cells, which can be explained by decreased levels of complement factor D (CFD) and C7 components of the complement cascade, an innate immune pathway that influences the adaptive immune response. We tested if the secretome was involved in BRF1-driven tumorigenesis. Unbiased proteomic analysis on BRF1-overexpresing PC3 cells confirmed reduced levels of CFD in the secretome, implicating the complement system in prostate carcinogenesis. We further identify that expression of C7 significantly correlates with expression of CD4 and has the potential to alter clinical outcome in human prostate cancer, where low levels of C7 associate with poorer prognosis

    The protein histidine phosphatase LHPP is a tumour suppressor

    Get PDF
    Histidine phosphorylation, the so-called hidden phosphoproteome, is a poorly characterized post-translational modification of proteins. Here we describe a role of histidine phosphorylation in tumorigenesis. Proteomic analysis of 12 tumours from an mTOR-driven hepatocellular carcinoma mouse model revealed that NME1 and NME2, the only known mammalian histidine kinases, were upregulated. Conversely, expression of the putative histidine phosphatase LHPP was downregulated specifically in the tumours. We demonstrate that LHPP is indeed a protein histidine phosphatase. Consistent with these observations, global histidine phosphorylation was significantly upregulated in the liver tumours. Sustained, hepatic expression of LHPP in the hepatocellular carcinoma mouse model reduced tumour burden and prevented the loss of liver function. Finally, in patients with hepatocellular carcinoma, low expression of LHPP correlated with increased tumour severity and reduced overall survival. Thus, LHPP is a protein histidine phosphatase and tumour suppressor, suggesting that deregulated histidine phosphorylation is oncogenic

    Brf1 loss and not overexpression disrupts tissues homeostasis in the intestine, liver and pancreas

    Get PDF
    RNA polymerase III (Pol-III) transcribes tRNAs and other small RNAs essential for protein synthesis and cell growth. Pol-III is deregulated during carcinogenesis; however, its role in vivo has not been studied. To address this issue, we manipulated levels of Brf1, a Pol-III transcription factor that is essential for recruitment of Pol-III holoenzyme at tRNA genes in vivo. Knockout of Brf1 led to embryonic lethality at blastocyst stage. In contrast, heterozygous Brf1 mice were viable, fertile and of a normal size. Conditional deletion of Brf1 in gastrointestinal epithelial tissues, intestine, liver and pancreas, was incompatible with organ homeostasis. Deletion of Brf1 in adult intestine and liver induced apoptosis. However, Brf1 heterozygosity neither had gross effects in these epithelia nor did it modify tumorigenesis in the intestine or pancreas. Overexpression of BRF1 rescued the phenotypes of Brf1 deletion in intestine and liver but was unable to initiate tumorigenesis. Thus, Brf1 and Pol-III activity are absolutely essential for normal homeostasis during development and in adult epithelia. However, Brf1 overexpression or heterozygosity are unable to modify tumorigenesis, suggesting a permissive, but not driving role for Brf1 in the development of epithelial cancers of the pancreas and gut

    mTOR in health and in sickness

    No full text
    Target of rapamycin (TOR) is a highly conserved protein kinase that plays a key role in mediating cell growth and homeostasis. It is activated by nutrients, growth factors, and cellular energy levels to control a number of anabolic and catabolic processes. It is a validated drug target implicated in a variety of diseases. In this review, we describe the molecular mode of action of TOR in the context of cellular and organismal physiology. We focus on mammalian TOR (mTOR) signaling in cancer and neurological disease and discuss usage of TOR inhibitors in the clinic

    Protein Kinase A, TOR, and Glucose Transport Control the Response to Nutrient Repletion in Saccharomyces cerevisiae▿ †

    No full text
    Nutrient repletion leads to substantial restructuring of the transcriptome in Saccharomyces cerevisiae. The expression levels of approximately one-third of all S. cerevisiae genes are altered at least twofold when a nutrient-depleted culture is transferred to fresh medium. Several nutrient-sensing pathways are known to play a role in this process, but the relative contribution that each pathway makes to the total response has not been determined. To better understand this, we used a chemical-genetic approach to block the protein kinase A (PKA), TOR (target of rapamycin), and glucose transport pathways, alone and in combination. Of the three pathways, we found that loss of PKA produced the largest effect on the transcriptional response; however, many genes required both PKA and TOR for proper nutrient regulation. Those genes that did not require PKA or TOR for nutrient regulation were dependent on glucose transport for either nutrient induction or repression. Therefore, loss of these three pathways is sufficient to prevent virtually the entire transcriptional response to fresh medium. In the absence of fresh medium, activation of the cyclic AMP/PKA pathway does not induce cellular growth; nevertheless, PKA activation induced a substantial fraction of the PKA-dependent genes. In contrast, the absence of fresh medium strongly limited gene repression by PKA. These results account for the signals needed to generate the transcriptional responses to glucose, including induction of growth genes required for protein synthesis and repression of stress genes, as well as the classical glucose repression and hexose transporter responses

    mTOR in health and in sickness

    No full text
    Target of rapamycin (TOR) is a highly conserved protein kinase that plays a key role in mediating cell growth and homeostasis. It is activated by nutrients, growth factors, and cellular energy levels to control a number of anabolic and catabolic processes. It is a validated drug target implicated in a variety of diseases. In this review, we describe the molecular mode of action of TOR in the context of cellular and organismal physiology. We focus on mammalian TOR (mTOR) signaling in cancer and neurological disease and discuss usage of TOR inhibitors in the clinic
    corecore