7 research outputs found

    Reusable ω-transaminase sol-gel catalyst for the preparation of amine enantiomers

    Get PDF
    Heterogeneous &omega;-transaminase sol-gel catalysts were prepared and characterized in terms of immobilization degree, loading capacity and catalytic behavior in the kinetic resolution of racemic 1-phenylethylamine (a model compound) with sodium pyruvate in phosphate buffer (pH 7.5). The catalyst obtained when &omega;-transaminase from Arthrobacter sp. was encapsulated from the aqueous solution of the enzyme, isopropyl alcohol and polyvinyl alcohol in the sol-gel matrices, consisting of the 1:5 mixture of tetramethoxysilane and methyltrialkoxysilane, proved to be optimal including the reuse and storage stabilities of the catalyst. &nbsp;The optimized immobilizate was shown to perform well in the kinetic resolution of four structurally different aromatic primary amines in aqueous DMSO (10 v/v-%). The enzyme preparation showed synthetic potential by enabling the catalyst reuse in five consecutive preparative scale kinetic resolutions using 100 mM 1-phenylethylamine in aqueous DMSO (10 v/v-%). It was typical to fresh catalyst preparations that the kinetic resolution tended to exceed 50% before the reaction stopped leaving the (S)-amine unreacted while thereafter in reuse the reactions stopped at 50% conversion as expectable to highly enantioselective reactions.</p

    Immunological effects of low-dose cyclophosphamide in cancer patients treated with oncolytic adenovirus

    No full text
    Patients with advanced solid tumors refractory to and progressing after conventional therapies were treated with three different regimens of low-dose cyclophosphamide (CP) in combination with oncolytic adenovirus. CP was given with oral metronomic dosing (50 mg/day, N = 21), intravenously (single 1,000 mg dose, N = 7) or both (N = 7). Virus was injected intratumorally. Controls (N = 8) received virus without CP. Treatments were well tolerated and safe regardless of schedule. Antibody formation and virus replication were not affected by CP. Metronomic CP (oral and oral + intravenous schedules) decreased regulatory T cells (T(regs)) without compromising induction of antitumor or antiviral T-cell responses. Oncolytic adenovirus given together with metronomic CP increased cytotoxic T cells and induced Th1 type immunity on a systemic level in most patients. All CP regimens resulted in higher rates of disease control than virus only (all P < 0.0001) and the best progression-free (PFS) and overall survival (OS) was seen in the oral + intravenous group. One year PFS and OS were 53 and 42% (P = 0.0016 and P < 0.02 versus virus only), respectively, both which are unusually high for chemotherapy refractory patients. We conclude that low-dose CP results in immunological effects appealing for oncolytic virotherapy. While these first-in-human data suggest good safety, intriguing efficacy and extended survival, the results should be confirmed in a randomized trial
    corecore