432 research outputs found

    On the Restricted Mean Event Time in Survival Analysis

    Get PDF

    On the Covariate-adjusted Estimation for an Overall Treatment Difference with Data from a Randomized Comparative Clinical Trial

    Get PDF
    To estimate an overall treatment difference with data from a randomized comparative clinical study, baseline covariates are often utilized to increase the estimation precision. Using the standard analysis of covariance technique for making inferences about such an average treatment difference may not be appropriate, especially when the fitted model is nonlinear. On the other hand, the novel augmentation procedure recently studied, for example, by Zhang and others (2008. Improving efficiency of inferences in randomized clinical trials using auxiliary covariates. Biometrics 64, 707–715) is quite flexible. However, in general, it is not clear how to select covariates for augmentation effectively. An overly adjusted estimator may inflate the variance and in some cases be biased. Furthermore, the results from the standard inference procedure by ignoring the sampling variation from the variable selection process may not be valid. In this paper, we first propose an estimation procedure, which augments the simple treatment contrast estimator directly with covariates. The new proposal is asymptotically equivalent to the aforementioned augmentation method. To select covariates, we utilize the standard lasso procedure. Furthermore, to make valid inference from the resulting lasso-type estimator, a cross validation method is used. The validity of the new proposal is justified theoretically and empirically. We illustrate the procedure extensively with a well-known primary biliary cirrhosis clinical trial data set

    Research on the Relationship between Urban Development Intensity and Eco-Environmental Stresses in Bohai Rim Coastal Area, China

    Get PDF
    To realize sustainable urban development that minimizes environmental impacts, the relationship between urban development intensity and eco-environmental stresses should be clearly revealed. This paper focused on the Bohai Rim coastal area, where cities have experienced significant development in the last decade. An index system was developed to quantify the comprehensive urban development intensity (CDI) and comprehensive eco-environment stresses (CES). Remote sensing imagery and statistical data were used to provide indices for CDI and CES. Spatiotemporal analysis was carried out on the correlation between the two indices. The coupling between the CDI and CES was then investigated to explore the urban development characteristics of each city in the study area, its development level, and the trend of urban development. Results showed that human activities surrounding urban development were partly dependent on the use of ecological resources to a certain degree, and that the degree of dependence increased with year. To promote a sustainable level of urban development, the government should focus on not only the high development intensity, but also the high quality of the eco-environment. Dalian was a good model of how to achieve a balance between the two

    Effectively Selecting a Target Population for a Future Comparative Study

    Get PDF
    When comparing a new treatment with a control in a randomized clinical study, the treatment effect is generally assessed by evaluating a summary measure over a specific study population. The success of the trial heavily depends on the choice of such a population. In this paper, we show a systematic, effective way to identify a promising population, for which the new treatment is expected to have a desired benefit, using the data from a current study involving similar comparator treatments. Specifically, with the existing data we first create a parametric scoring system using multiple covariates to estimate subject-specific treatment differences. Using this system, we specify a desired level of treatment difference and create a subgroup of patients, defined as those whose estimated scores exceed this threshold. An empirically calibrated group-specific treatment difference curve across a range of threshold values is constructed. The population of patients with any desired level of treatment benefit can then be identified accordingly. To avoid any ``self-serving\u27\u27 bias, we utilize a cross-training-evaluation method for implementing the above two-step procedure. Lastly, we show how to select the best scoring system among all competing models. The proposals are illustrated with the data from two clinical trials in treating AIDS and cardiovascular diseases. Note that if we are not interested in designing a new study for comparing similar treatments, the new procedure can also be quite useful for the management of future patients who would receive nontrivial benefits to compensate for the risk or cost of the new treatment
    • …
    corecore