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On the restricted mean event time in survival analysis

Lu Tian, Lihui Zhao and LJ Wei

February 26, 2013

Abstract

For designing, monitoring and analyzing a longitudinal study with an event time as

the outcome variable, the restricted mean event time (RMET) is an easily interpretable,

clinically meaningful summary of the survival function in the presence of censoring.

The RMET is the average of all potential event times measured up to a time point τ,

which can be estimated consistently by the area under the Kaplan-Meier curve over

[0, τ ]. In this paper, we present inference procedures for model-free parameters based

on RMETs under the one- and two-sample settings. We then propose a new regression

model, which relates the RMET to its covariates directly for predicting the subject-

specific RMETs. Since the standard Cox and the accelerated failure time models can

also be used for estimating such RMETs, we utilize a cross validation procedure to

select the “best” working model. Lastly we draw inferences for the subject-specific

RMETs based on the final candidate model using an independent data set or a “hold-

out” sample from the original data set. All the proposals are illustrated with the data

from the a HIV clinical trial conducted by the AIDS Clinical Trials Group and the

PBC study conducted by the Mayo Clinic.

Keywords: Accelerated failure time model; Cox model; cross validation, hold-out

sample, personalized medicine; perturbation-resampling method
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1 Introduction

For a longitudinal study with time T to a specific event as the primary outcome variable,

commonly used summary measures for the distribution of T are the mean, median or t-year

event rate. Due to potential censoring for T , the mean may not be well estimated. If the

censoring is heavy, the median cannot be identified empirically either. The t−year survival

rate may not be suitable for summarizing the global profile of T . On the other hand, based

on the design of the study and clinical considerations, one may pre-specify a time point τ

and utilize the expected value µ of Y = min(T, τ), the so-called restricted mean event time

(RMET), as a summary parameter. This parameter is the mean of T for all potential study

patients followed up to time τ , which has a heuristic and clinically meaningful interpretation

(Irwin, 1949; Karrison, 1987; Zucker, 1998; Murray & Tsiatis, 1999; Chen & Tsiatis, 2001;

Andersen et al., 2004; Zhang & Schaubel, 2011; Royston & Parmar, 2011; Zhao et al., 2012).

Moreover, this model-free parameter can be estimated consistently via the standard Kaplan-

Meier (KM) curve, that is, the area under the curve up to τ. Inferences about the RMET

can be obtained accordingly.

For a study for comparing two groups, say, A and B, with event time observations,

practitioners routinely use the hazard ratio to quantify the between-group difference. When

the proportional hazards assumption is not valid, the standard maximum partial likelihood

estimator of the hazard ratio approximates a parameter which is difficult, if not impossible,

to interpret as the treatment contrast (Kalbfleisch & Prentice, 1981; Lin & Wei, 1989; Xu

& O’Quigley, 2000; Rudser et al., 2012). Moreover, this parameter depends, oddly, on the

nuisance, study-specific censoring distributions. It follows that the hazard ratio estimators

at the interim and final analyses from the same study or estimators from independent studies

with an identical study population would estimate different, uninterpretable parameters due

to differential follow-up patterns. In fact, any model-based estimate in survival analysis may

have this problem. Therefore, it is highly desirable to consider an estimable, model-free

and censoring-independent parameter to quantify the treatment difference for coherent and
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consistent assessments between interim and final analyses within a study, as well as across

independent studies. Model-free parameters for the treatment difference can be constructed

via two RMETs, say, µA and µB. As an example, to evaluate the added value of a potent

protease inhibitor, indinavir, for HIV patients, a pivotal study ACTG 320 was conducted

by the AIDS Clinical Trials Group (ACTG). This randomized, double-blind study (Hammer

et al., 1997) compared a three-drug combination, indinavir, zidovudine and lamivudine, with

the standard two-drug combination, zidovudine and lamivudine. There were 1156 patients

enrolled for the study. One of the endpoints was the time to AIDS or death with the follow-

up time about one year for each patient. Figure 1 presents the Kaplan-Meier curves for

these two treatment groups. The hazard ratio estimate is 0.50 and the corresponding 0.95

confidence interval is (0.33, 0.76) with a p-value of 0.001. It is not clear if the proportional

hazard assumption is valid for this study. With τ = 300 days, the estimated RMET (the area

under the KM curve up to 300 days) was 277 days for the control and was 288 days for the

three-drug combination. The estimated difference with respect to the RMET is 11 days with

the corresponding 0.95 confidence interval of (3.2, 17.3) and a p-value of 0.005. Although

the treatment efficacy for the three drug combination is highly statistically significant, its

clinical benefit is debatable, considering the relatively short follow-up time of the study. On

the other hand, if we mimic the concept of the hazard ratio or relative risk as a summary

measure for the treatment contrast, one may consider a model-free ratio R of (τ − µB) and

(τ −µA). With the above HIV data, if B is the new treatment with three drug combination,

the estimated R is 0.55 with a p-value of 9.3×10−6, also an impressive statistically significant

result. For a single arm, (τ − µ) is the average of the days lost from the healthy state up to

τ, a meaningful alternative to µ as a summary parameter for the distribution of T. Note that

the above confidence interval estimates and p-values were obtained using a perturbation-

resampling method detailed in Section 2.

In this paper, we first present the inference procedures for one- and two-sample problems

and then consider regression models for the RMET. For the regression analysis, our goal
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is to build a prediction model via an extensive model selection process to stratify future

patients using the patients’ “baseline” covariates. The existing regression models such as

the Cox model can be candidates to create such a stratification system. However, it seems

more natural to model the RMET with the covariates directly, not via the hazard function

(Andersen et al., 2004). In this article, we consider a new class of models which takes

this approach and study the properties of the corresponding inference procedures. Since

it is unlikely that any model will be precisely correct, our ultimate goal is to choose the

best “fitted” model to stratify the future patients. To avoid overly optimistic results, we

randomly split the data set into two pieces. Based on the first piece, called the training

set, we utilize a cross validation procedure to build and select the final model. We then use

the second data set, called the holdout set, to make inferences about the RMETs over a

range of scores created from the final model. We use a data set from a well-known clinical

study conducted at Mayo Clinic (Therneau & Grambsch, 2000) for treating a liver disease

to illustrate the proposals for individualized prediction.

2 One- and two-sample inference procedures for RMET

For a typical subject with event time T , let Z be the corresponding q-dimensional baseline

covariate vector. Suppose that T is subject to right censoring by a random variable C,

which is assumed to be independent of T and Z. The observable quantities are (U,∆, Z),

where U = min(T,C), ∆ = I(T ≤ C), and I(·) is the indicator function. The data,

{(Ui,∆i, Zi); i = 1, . . . , n}, consist of n independent copies of (U,∆, Z). Suppose that for

a time point τ, pr(U ≥ τ) > 0. The restricted survival time Y = min(T, τ) may also be

censored, but its expected value µ is estimable. Let Yi be the corresponding Y for the ith

subject, i = 1, . . . , n. A natural estimator for µ is

µ̂ =

∫ τ

0

Ŝ(u)du,
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where Ŝ(u) is the KM estimator for the survival function of T based on {(Ui,∆i), i =

1, . . . , n}. Alternatively, one may employ the inverse probability censoring weighting method

to estimate µ as

µ̃ = n−1

n∑
i=1

∆̃i

Ĝ(Yi)
Yi,

where ∆̃i = I(Yi ≤ Ci) and Ĝ(·) is the KM estimator of the censoring time C based on

{(Ui, 1−∆i), i = 1, . . . , n}. In Appendix A we show that µ̃ and µ̂ are asymptotically equiva-

lent at the root n rate. Similar observations had been made by Satten & Datta (2001) with

respect to KM estimator and its inverse weighting counterpart. It is straightforward to show

that as n → ∞, n1/2(µ̂−µ) is approximately normal with mean zero and variance σ2, which

can be estimated analytically or by a perturbation-resampling method. Specifically, let

µ∗ = n−1

n∑
i=1

∆̃i

G∗(Yi)
YiQi,

where {Q1, · · · , Qn} are positive random variables with unit mean and variance and inde-

pendent of the observed data and G∗(·) is a perturbed version of the KM estimator of the

censoring variable. Here,

G∗(t) = Ĝ(t)

(
1− 1

n

n∑
i=1

∫ t

0

dM̂C
i (u)∑n

j=1 I(Uj ≥ u)
Qi

)
,

M̂C
i (u) = I(Ui ≤ u)(1−∆i)−

∫ u

0
I(Ui ≥ s)dΛ̂C(s) and Λ̂C(v) is the Nelson-Aalen estimator for

the cumulative hazard function of the censoring time C. Then given the data, the conditional

distribution of n1/2(µ∗−µ̂) converges to the unconditional limiting distribution of n1/2(µ̂−µ).

In practice, one may generate a large number, say, M, of replications of {Q1, · · · , Qn} and

calculate the corresponding µ∗. Then the empirical distribution of M generated µ∗s can

be used to make inference about µ. This resampling technique has been used for various

applications in survival analysis and in general preforms better than its analytical counterpart

(Tian et al., 2005; Uno et al., 2007; Li et al., 2011). Moreover, if we are interested in a function
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of µ, say, g1(µ), one can utilize M realizations of g1(µ
∗) for making inference. Note that for

censored data, the standard bootstrapping method may generate a KM curve which is not

defined at time τ and µ would not be estimable via this bootstrap sample.

For the two-sample problem, let Z be A or B as in the Introduction. Let the correspond-

ing means µ be denoted by µA and µB and their estimators by µ̂A and µ̂B, respectively.

Suppose we are interested in estimating a model-free parameter ζ = g2(µA, µB), where

g2(·, ·) is a smooth bivariate function. For example, g2(a, b) = b− a, b/a, (τ − a)/(τ − b) or

{b/(τ − b)}/{a/(τ − a)}. Then ζ can be estimated consistently with ζ̂ = g2(µ̂A, µ̂B) and its

variance estimate can be obtained via the delta-method. Alternatively, the distribution of

(ζ̂−ζ) can be approximated by the conditional distribution of (ζ∗−ζ̂), where ζ∗ = g2(µ
∗
A, µ

∗
B)

and µ∗
A and µ∗

B are the perturbed µ∗ for groups A and B, respectively. The 0.95 confidence

interval estimates and p-values for the HIV example in the Introduction were obtained with

M = 1000 and Qs generated from the unit exponential.

3 Regression Models for RMET

If the parameter of interest is the RMET, it is natural to model

µ(z) = E(Y |Z = z)

with the covariate vector Z = z directly (Andersen et al., 2004). For example, one may

consider

η{µ(z)} = β′X, (1)

where η(·) is a given smooth, strictly increasing function from [0, τ ] to the real line, β is

a (q + 1)-dimension unknown vector and X ′ = (1, Z ′). A special link function is η(a) =

log{a/(τ − a)}, which mimics the logistic regression. Note that with this specific link, for
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the two sample problem, the regression coefficient of the treatment indicator is

log

{
µB(τ − µA)

µA(τ − µB)

}
,

an odds-ratio like summary for the group contrast, which was used for analyzing HIV data

discussed in the Introduction.

For the general link function η(·), following the least squares principle, an inverse prob-

ability censoring weighted estimating function of β is

Sn(β) = n−1

n∑
i=1

∆̃i

Ĝ(Yi)
Xi

{
Yi − η−1(β′Xi)

}
.

Let β̂ be the unique root of Sn(β) = 0. Under mild regularity conditions, one can show that

Sn(β) uniformly converges to a monotone limiting function

S(β) = E
[
X
{
µ(Z)− η−1(β′X)

}]
in probability. Let β̄ be the root of S(β) = 0. It follows that β̂ converges to β̄ in probability,

even when the model is misspecified. As n → ∞, n1/2(β̂−β̄) converges weakly to a mean zero

Gaussian distribution. Moreover, we can make statistical inference for β̄ via the perturbation-

resampling methods similar to those given in the previous section. Specifically, let β∗ be the

root of the perturbed estimating equation

n−1

n∑
i=1

∆̃i

Ĝ∗(Yi)
Xi

{
Yi − η−1(β′Xi)

}
Qi = 0.

It follows from the argument similar to that in Lin et al. (1993), Park & Wei (2003), and

Tian et al. (2005) that the conditional distribution of n1/2(β∗ − β̂) given the observed data

can approximate the unconditional limiting distribution of n1/2(β̂ − β̄). In Appendix B, we

justify this large sample approximation.
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Note that Andersen et al. (2005) studied models such as (1) via a log-link η(·) using

a psedo-observation technique to make inferences about the regression coefficient assuming

the model is correctly specified. It can be shown that in general our estimator β̂ would

converge to the same parameter as that with the procedure taken by Andersen et al. (2005)

when the model (1) is correctly specified. It would be theoretically interesting to compare the

efficiency of these two procedures with respect to the estimation of the regression coefficients.

However, since it is unlikely that the working model would be correctly specified, in practice

it seems more relevant to evaluate such a model from the prediction point of view as we do

in this article.

Using the above model, one may estimate µ(z) by µ̂(z) = η−1(β̂′x), for any fixed Z = z,

where x′ = (1, z′). The distribution of {µ̂(z)− η−1(β̄′x)} can be approximated by the above

resampling method. Note that µ(z) can also be estimated via, for example, a Cox model

(Cox, 1972). Specifically, let the hazard function for given z be

λ(t|Z = z) = λ0(t)e
γ′z,

where γ is a q-dimensional unknown vector and λ0(·) is the nuisance baseline hazard function.

It follows that µ(z) can be estimated by

µ̂(z) =

∫ τ

0

exp{−Λ̂0(s)e
γ̂′z}ds,

where γ̂ and Λ̂0(s) are the maximum partial likelihood estimator for γ and the Breslow

estimator for Λ0(s) =
∫ s

0
λ0(v)dv, respectively.

Alternatively, one may use the accelerated failure time (AFT) model (Kalbfleisch &

Prentice, 2002)

log(T ) = γ′Z + ϵ,

to make inference about µ(z), where γ is a q-dimensional unknown vector and ϵ is the error

8

http://biostats.bepress.com/harvardbiostat/paper156



term whose distribution is entirely unspecified. Here, γ can be estimated via a rank-based

estimating function (Ritov, 1990; Tsiatis, 1990; Wei et al., 1990; Jin et al., 2003). Let γ̂

be the corresponding estimator for γ. One may estimate the survival function of eϵ by KM

estimator based on the data {(Uie
−γ̂′Zi ,∆i), i = 1, · · · , n}. Let the resulting estimator be

denoted by Ŝ0(·). Then one can estimate µ(z) by µ̂(z) =
∫ τ

0
Ŝ0(e

−γ̂′zs)ds. Note that when

pr(C > eγ
′Z sup eϵ) > 0, µ̂(z) is estimable for any given covariate z. In practice, we can always

set the censoring indicator at one for the observation with the largest Uie
−γ̂′Zi in estimating

the survival function of eϵ. Although these estimators for µ(z) may not be consistent and

in general depend on the censoring distribution under misspecified model, they still can be

reasonable predictions for the RMET.

4 Model Selection and Evaluation

All the models for estimating µ(z) discussed in the previous section are approximations to

the true model. To compare these models, one may compare the observed restricted event

time Y with the covariate vector z and its predicted µ̂(z). A reasonable predicted error

measure is E|Y − µ̂(Z)|, where the expected value is with respect to the data and the future

subject’s (Y, Z). If there is no censoring, the empirical apparent prediction error is

n−1

n∑
i=1

|Yi − µ̂(Zi)|,

which is obtained by first using the entire data to compute µ̂(·) and then using the same

data to estimate the predicted error. Such an estimator may be biased downward (Stone,

1974; Geisser, 1975). An alternative is to utilize a cross-validation procedure to estimate

such a predicted error (Tian et al., 2007; Uno et al., 2007).

Specifically, consider a class of models for µ(Z). For each model, we randomly split the

data set into K disjoint subsets of approximately equal sizes, denoted by {Ik, k = 1, . . . , K}.

For each k, we use all observations which are not in Ik to obtain a model-based prediction

9
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rule µ̂(−k)(Z) for Y , and then estimate the total absolute prediction error for observations

in Ik by

D̂k =
∑
j∈Ik

∆̃j

Ĝ(Yj)

∣∣Yj − µ̂(−k)(Zj)
∣∣ .

Then we use the average n−1
∑K

k=1 D̂k as a K-fold cross-validation estimate for the absolute

prediction error. We may repeat the aforementioned procedure a large number of, say B,

times with different random partitions. Then the average of the resulting B cross-validated

estimates is the final B random K-fold cross-validation estimate for the absolute prediction

error of the fitted regression model. Generally, the model which yields the smallest cross-

validated absolute prediction error estimate among all candidate models is chosen as the final

model. On the other hand, a parsimonious model may be chosen if its empirical predicted

error is comparable with that for the best one. We then refit the entire data set with this

selected model for making predictions based on µ̂(·).

Note that in the training stage of this cross validation process, a candidate model may be

obtained via a complex variable selection process. For example, a Cox model may be built

with a stepwise regression or lasso procedure. In this case, the final choice for creating the

score would be refitting the entire data set with the selected model building algorithm.

5 Nonparametric Inference About Subject-Specific RMET

Now, let the observed µ̂(·) from the final selected model be denoted by µ̂opt(·) and for a future

subject with (Y, Z), let its prediction score be denoted by V = µ̂opt(Z). That is, for each

future subject, the covariate vector Z is reduced to a one-dimensional V which is a function

of Z. If the selected model is close to the true one, we expect that E(Y |V ) ≈ µ(Z) ≈ V.

In general, however the group mean ξ(v) = E(Y |V = v) by clustering all subjects with

Z, whose µ̂opt(Z) = v, may be quite different from the identity function. Therefore, the

conventional parametric inferences for predicting ξ(v) via the selected model may not be

valid. On the other hand, since we reduce the covariate information to a univariate score V,
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one may utilize a nonparametric estimation procedure to draw valid inferences about ξ(·).

To make nonparametric inference about ξ(v) simultaneously across a range of the score

v, we use a fresh independent data set or “hold-out” set from the original data set. With

slight abuse of notations, let such a fresh data set be denoted by {(Ui,∆i, Vi), i = 1, · · · , n}.

We propose to use local linear smoothing method to estimate ξ(v) nonparametrically. To

this end, for a score v inside the support of V , let â and b̂ be the solution of the estimating

equation

Sn(a, b; v) =
n∑

i=1

Kh(Vi − v)∆̃i

Ĝ(Yi|v)

 1

Vi − v

[Yi − η̃−1{a+ b(Vi − v)}
]
= 0,

where K(·) is a smooth symmetric kernel function with a finite support, Kh(s) = K(s/h)/h,

h = op(1) is the smoothing bandwidth,

Ĝ(t|v) = exp

{
−

n∑
i=1

∫ t

0

dNC
i (u)Kh(Vi − v)∑n

j=1(Uj ≥ u)Kh(Vj − v)

}

is the local nonparametric estimator for the survival function of C (Dabrowska, 1987, 1989)

and NC
i (u) = I(min(Ui, τ) ≤ u)(1 − ∆̃i). Here η̃(·) is a strictly increasing function from

[0, τ ] to the entire real line given a priori. The resulting local linear estimator for ξ(v)

is ξ̂(v) = η̃−1(â). As n → ∞ and nh5 = op(1), (nh)1/2{ξ̂(v) − ξ(v)} converges weakly

to a mean zero Gaussian. The details are given in Appendix C. Since the censoring time

C is assumed to be independent of V, generally the nonparametric KM estimator based

on entire sample is used in the inverse probability weighting method for Sn(a, b; v). Here,

we use the local estimator Ĝ(t|v) in the above estimating equation. In the Appendix C,

we show that this estimation procedure results in a more accurate estimator for ξ(v) than

that using Ĝ(·). Note that when the empirical distribution of {Vi, i = 1, · · · ,m} is quite

non-uniform, transforming the score via an appropriate function before smoothing could

potentially improve the performance of the kernel estimation (Wand et al., 1991; Park et al.,
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1997; Cai et al., 2010).

The aforementioned perturbation-resampling procedure in section 2 can be used to es-

timate the variance of ξ̂(v). To this end, let â∗ and b̂∗ be the solution of the perturbed

estimating equation

S∗
n(a, b; v) =

n∑
i=1

Qi
Kh(Vi − v)∆̃i

G∗(Yi|v)

 1

Vi − v

[Yi − η̃−1{a+ b(Vi − v)}
]
= 0,

where

G∗(t|v) = exp

{
−

n∑
i=1

∫ t

0

QidN
C
i (u)Kh(Vi − v)∑n

j=1Qj(Uj ≥ u)Kh(Vj − v)

}
.

Then a perturbed estimator for ξ(v) is ξ̂∗(v) = η̃−1(â∗). Conditional on the observed data,

the limiting distribution of (nh)1/2{ξ̂∗(v)−ξ̂(v)} approximates the unconditional counterpart

of (nh)1/2{ξ̂(v) − ξ(v)}. It follows that one can estimate the variance of ξ̂(v) by σ̂2(v), the

empirical variance of M realized ξ̂∗(v)′s. Based on generated ξ̂∗(v), one may construct

(1− 2α) confidence interval of ξ(v) as

[
ξ̂(v)− cασ̂(v), ξ̂(v) + cασ̂(v)

]
,

where cα is the upper 100α percentage point of the standard normal.

It is important to note that as a process, the standardized ξ̂(·) does not converge weakly

to a tight process (Bickel & Rosenblatt, 1973). On the other hand, one can use the strong

approximation theory to show that the distribution of the supremum of the standardized

process can still be approximated by that of the supremum of its perturbed counterpart

(Gilbert et al., 2002). It follows that for an interval [v1, v2], a subset of the support of V, the

(1− 2α) simultaneous confidence band of ξ(v), v ∈ [v1, v2] can be constructed similarly as

[ξ̂(v)− dασ̂(v), ξ̂(v) + dασ̂(v)],

12
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where

pr

{
sup

v∈[v1,v2]

|ξ̂∗(v)− ξ̂(v)|
σ̂(v)

< dα

∣∣∣∣ (Ui,∆i, Vi), i = 1, . . . , n

}
= 1− 2α,

where [v1, v2] is an interval within the support of V. Since we require that the bandwidth h

converges to zero at a rate faster than the “optimal” Op(n
−1/5) rate, the bias of ξ̂(v) does

not play any role in the construction of the confidence interval or band for ξ(v).

As with any nonparametric function estimation problem, it is crucial to choose an ap-

propriate bandwidth h in order to make proper inference about ξ(v). Here, we propose a

L fold cross-validation procedure to choose an optimal h value which minimizes a weighted

cross-validated absolute prediction error. To this end, we randomly split the data set into L

disjoint subsets of approximately equal sizes, denoted by {Il, l = 1, . . . , L}. For any fixed h,

we use all observations which are not in Il to obtain an estimator ξ̂(−l)(v, h) for predicting

Y , and then estimate the total absolute prediction errors based on observations in Il by

D̂l(h) =
∑
j∈Il

∆̃j

Ĝ(Yj)

∣∣∣Yj − ξ̂(−l)(Vj, h)
∣∣∣ .

Then we may use D̂(h) = n−1
∑L

l=1 D̂l(h) as a final estimate for the absolute prediction

error. We may choose hopt as the minimizer of D̂(h). In practice, to reduce the asymptotic

bias, we propose to use a bandwidth slightly smaller than hopt, which is expected to be in the

order of Op(n
−1/5). For example, h = hopt×n−0.05 can be used in local smoothing estimation

(Tian et al., 2005; Cai et al., 2010).

6 Example for Subject-Specific Prediction

In this section, we use a well-known data set from a liver study to illustrate how to build

and select a model, and make inferences simultaneously about the RMETs over a range

of scores created by the final model. This liver disease study in primary biliary cirrhosis

(PBC) was conducted between 1974 and 1984 to evaluate the drug D-penicillamine, which
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was found to be futile with respect to the patient’s mortality. The investigators for the study

then used this rich data set to build a prediction model with respect to mortality (Fleming

& Harrington, 1991). There were a total of 418 patients involved in the study including

112 patients who did not participate in the clinical trials, but had baseline and mortality

information. For illustration, any missing baseline value was imputed by the corresponding

sample mean calculated from its observed counterparts in the study. We randomly split the

data set with equal sizes as the training and hold-out sets.

For our analysis, we consider sixteen baseline covariates: gender, histological stage of the

disease (1, 2, 3, and 4), presence of ascites, edema, hepatomegaly or enlarged liver, blood

vessel malformations in the skin, log-transformed age, serum albumin, alkaline phosphotase,

aspartate aminotransferase, serum bilirubin, serum cholesterol, urine copper, platelet count,

standardized blood clotting time and triglycerides. Three models discussed in Section 4

with these covariates included additively were considered in the model selection. They are

the Cox model, the AFT model, and the new RMET model. Moreover, since a Cox model

with five specific covariates (edema, age, bilirubin, albumin and standardized blood clotting

time) has been established as a prediction model in the literature (Fleming & Harrington,

1991), we also considered the aforementioned three types of models with these five covariates

additively in our analysis. There are, therefore, six different models were considered. Note

that there was no variable selection procedure involved in the model building stage for this

illustration.

Figure 2 shows the KM curve for the patients’ survival with the entire data set. The

patients’ follow-up times are up to 13 years. Since the tail part of the KM estimate is not

stable. We let τ = 10 years for illustration. The overall 10-year survival rate is about 44%.

Table 1 presents the L1 prediction error estimates for the RMET up to 10 years for the

three model building procedures based on 100 random 5-fold cross-validations. With cross-

validation, the L1 prediction error is minimized at 1.94 when the proposed regression model

(1) with the logistic link function η(µ) = log{µ/(τ − µ)} based on five baseline covariates is
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utilized.

The final model is obtained by fitting the RMET model with five covariates:

η{µ(z)} = 6.36− 0.14× edema− 2.95× log(age) + 0.99× log(bilirubin)

−0.35× log(albumin) + 0.34× log(clotting time).

We then use the score created by this model to make prediction and stratification for subjects

in the hold-out set.

For predicting future restricted event time, we use the procedures proposed in Section 5

to estimate the subject-specific RMET ξ(v) over a range of score v’s, and construct its 0.95

pointwise and simultaneous confidence intervals over the interval [0.07, 9.52], where 0.07 and

9.52 are the 2nd and 98th percentiles of observed scores in the holdout set. Here, we let

K(·) be the Epanechnikov kernel and the bandwidth be 2.1, as selected via cross-validation.

The results are presented in the first panel of Figure 3. For comparison, we also present

the corresponding results in the second panel of Figure 3 with the survival function of the

censoring time C being estimated based on the entire sample rather than locally as proposed

in Section 5. As expected, the resulting estimator for ξ(v) is less accurate, e.g., the 95%

confidence interval for ξ(5) is 24.8% wider when the survival function of C is estimated based

on the entire sample.

As a conventional practice, we may stratify the subjects in the hold-out set into groups

such as low, intermediate and high risk groups by discretizing the continuous score. For

example, we may create four classes based on the quartiles of the scores. Figure 4 presents

the KM curves for these four strata. Visually these curves appear quite different. Moreover,

their estimated RMETs and the standard error estimates (in paratheses) are 3.59 (0.46), 6.26

(0.53), 8.50 (0.40), and 9.14 (0.31) in years, respectively. These indicate that the scoring

system does have reasonable discriminating capability with respect to the patients’ RMET.

How to construct an “efficient” categorization of the existing scoring system warrants future
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research.

7 Remarks

In comparing two groups with censored event time data, the point and interval estimates of

the two RMETs and their counterparts for the group contrast provide much more clinically

relevant information than, for example, the hazard ratio estimate. The results from the HIV

data set from ACTG 320 discussed in the Introduction is a good example, in that the three

drug combination is statistically significantly better than the conventional therapy, but the

gain from the new treatment with respect to RMET was not as impressive from a clinical

standpoint, likely due to the relatively short follow-up time. Note that for this case, the

median event time cannot be estimated empirically due to heavy censoring. Moreover, we

cannot evaluate models using the individual predicted error, such as the L1 distance function,

with the median event time. It follows that the RMET is probably the most meaningful,

model-free, global measure for the distribution of the event time to evaluate the treatment

efficacy. The choice of τ to define the RMET is crucial, which may be determined at the

study design stage with respect to clinical relevance and feasibility of conducting the study.

Note that one of the attractive features of the model which directly relates the RMET

to its covariates proposed here is that the score created is free of the censoring distribution

even when the model is not correctly specified. On the other hand, those scores built from

the Cox or AFT models depend on the study-specific censoring distribution when the model

is misspecified.

Appendix A: The asymptotic equivalence of µ̂ and µ̃

Firstly, for t ∈ [0, τ ], the KM estimator Ŝ(t) is the solution to the forward integral equation

S(t) = 1−
∫ t

0

S(u−)dΛ̂(u)
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and thus

Ŝ(t) = 1−
∫ t

0

Ŝ(u−)
dN(u)

Y (u)
= 1− 1

n

∫ t

0

dN(u)

Ĝ(u−)
+ op(n

−1/2)

= 1− 1

n

n∑
i=1

I(Yi ≤ t)∆̃i

Ĝ(Yi)
+ op(n

−1/2) =
1

n

n∑
i=1

I(Yi > t)∆̃i

Ĝ(Yi)
+ op(n

−1/2)

where N(t) =
∑n

i=1Ni(t), Y (t) =
∑n

i=1 I(Ui ≥ t) and Λ̂(·) is the Nelsen-Aalen estimator of

the cumulative hazard function of Y. In the above derivation, we have used the fact that

n−1Y (t) = Ĝ(t−)Ŝ(t−) + op(n
−1).

Therefore

µ̂− µ̃ =
1

n

n∑
i=1

∫ τ

0

I(Yi > t)∆̃i

Ĝ(Yi)
dt− µ̃+ op(n

−1/2)

=
1

n

n∑
i=1

∆̃i

Ĝ(Yi)
Yi − µ̃+ op(n

−1/2) = op(n
−1/2).

Appendix B: The asymptotic properties of β̂

It can be shown that S(β) has an unique solution at β̄ when model (1) is correctly specified.

Let the root of the estimating equation Sn(β) = 0 be denoted by β̂, β̂ converges to β̄ in

probability. Furthermore, one can show that

n1/2Sn(β̄) = n−1/2

n∑
i=1

κi + op(1)

where

κi = Xi

{
Yi − η−1(β̄′Xi)

}
−
∫ τ

0

dMC
i (u)

G(u)

[
Xi

{
Yi − η−1(β̄′Xi)

}
−K(β̄, u)

]
,
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and

K(β̄, u) = S(u)−1E
[
X
{
Y − η−1(β̄′X)

}
I(Y ≥ u)

]
.

Coupled with the local linearity of the estimating function, this expansion implies that

n1/2(β̂−β̄) converges weakly to a mean zero Gaussian distribution with a variance-covariance

matrix of A−1BA−1, where

A = E
{
X⊗2η̇−1(β̄′X)

}
,

B = E
[
X⊗2

{
Y − η−1(β̄′X)

}2]
+

∫ τ

0

E
[
X
{
Y − η−1(β̄′X)

}
−K(β̄, u)

]⊗2
I(T ≥ u)

dΛC(u)

G(u)
,

η̇−1(·) is the derivative of η−1(·) and a⊗2 = aa′ for vector a.

Furthermore, one can show that

n1/2(β∗ − β̂) = A−1n1/2S∗(β̂) + oP̃ (1) = n−1/2

n∑
i=1

(Qi − 1)κ̂i + oP̃ (1)

where the probability measure P̃ is the product measure generated by {Q1, . . . , Qn} and

data,

κ̂i = Xi

{
Yi − η−1(β̂′Xi)

}
− n−1/2

∫ τ

0

dM̂C
i (u)

Ĝ(u)

[
Xi

{
Yi − η−1(β̂′Xi)

}
− K̂(β̂, u)

]
+ op(1),

M̂C
i (u) = I(Ui ≤ u)(1−∆i)−

∫ u

0
I(Ui ≥ t)dΛ̂C(t) and

K̂(β, u) =

∑n
i=1Xi {Yi − η−1(β′Xi)} I(Ui ≥ u)∑n

i=1 I(Ui ≥ u)
.

Therefore, as n → ∞ the conditional variance of n1/2(β∗ − β̂) converges to

A−1(n−1

n∑
i=1

κ̂⊗2
i )A−1,
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which is a consistent estimator of A−1BA−1.

Appendix C: The Asymptotic Properties of ξ̂(v)

Let bh = b̃. As n → ∞, the estimating equation Sn(a, b̃; v) converges to

S(a, b̃; v) = fV (v)


[
ξ(v)−

∫
K(x)η̃−1(a+ b̃x)dx

]
−
∫
xK(x)η̃−1(a+ b̃x)dx

 ,

where fV (·) is the density function of V. Since S(a, b̃; v) = 0 has an unique root (a, b̃) =

(η̃{ξ(v)}, 0), â → η̃{ξ(v)} and hb̂ → 0 in probability as n → ∞. Furthermore, by Taylor

series expansion, we have

(nh)1/2{η̃−1(â)− ξ(v)}

=
n1/2

fV (v)h1/2

n∑
i=1

∆̃i

Ĝ(t|v)
Kh(Vi − v)

[
Yi − η̃−1{a0 + b0(Vi − v)}

]
=
h1/2

n1/2

n∑
i=1

(
Kh(Vi − v){Yi − ξ(Vi)} −

∫ ∞

0

dMC
i (u)

G(u)
Kh(Vi − v) [{Yi − ξ(Vi)} −R(u, v)]

)
+ op(1)

where

R(u, v) =
γ1(u|v)
ST (u|v)

and γj(u|v) = E[I(Y ≥ u){Y − ξ(v)}j|V = v].

Therefore, by martingale central limit theorem (nh)1/2{η̃−1(â) − ξ(v)} converges weakly to

a mean zero Guassian with variance

ν2

[
E[{Y − ξ(v)}2|V = v] +

∫ ∞

0

{
γ2(u|v)−

γ1(u|v)2

ST (u|v)

}
dΛC(u)

G(u)

]
,

where ν2 =
∫
K(v)2dv. If we use the KM estimator Ĝ(u) to replace Ĝ(u|v) in the estimating

function Sn(a, b; v) and denote the corresponding estimator by ξ̃(v), then one can similarly
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show that the variance of the (nh)1/2{ξ̃(v)− ξ(v)} is

ν2

[
E[{Y − ξ(v)}2|V = v] +

∫ ∞

0

γ2(u|v)
dΛC(u)

G(u)

]

which is greater than that of (nh)1/2{ξ̂(v)− ξ(v)}.
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Figure 1: Kaplan-Meier estimates of the survival functions of the two randomized groups
based on the ACTG 320 data
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Figure 2: Kaplan-Meier estimate of the overall patient survival function based on the PBC
data (Solid: point estimate, Dashed: 95% pointwise confidence interval
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Figure 3: Estimated subject-specific restricted mean survival time (solid curve) over the
score, and its 95% pointwise (dashed curve) and simultaneous confidence intervals (shaded
region). The dotted line is the 45 degree reference line. The survival function of the censoring
time C is estimated locally in the first panel and based on the entire sample in the second
panel.
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Figure 4: Kaplan-Meier estimates of the survival functions of the four strata divided by
quartiles of the scores based on the PBC data

26

http://biostats.bepress.com/harvardbiostat/paper156



Table 1: L1 prediction error estimates for the restricted mean event time up to 10 years of
the three model building procedures based on 100 random 5-fold cross-validations (CV)

L1 prediction error with CV

Cox model AFT model New model
5 covariates 2.34 2.00 1.94
16 covariates 2.34 2.11 2.10
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