14 research outputs found

    Quasi-free (p,2p) reactions in inverse kinematics for studying the fission yield dependence on temperature

    Get PDF
    Despite the recent experimental and theoretical progress in the investigation of the nuclear fission process, a complete description still represents a challenge in nuclear physics because it is a very complex dynamical process, whose description involves the coupling between intrinsic and collective degrees of freedom, as well as different quantum-mechanical phenomena. To improve on the existing data on nuclear fission,we produce fission reactions of heavy nuclei in inverse kinematics by using quasi-free (p,2p) scattering, which induce fission through particle-hole excitations that can range from few to ten\u27s of MeV. The measurement of the four-momenta of the two outgoing protons allows to reconstruct the excitation energy of the fissioning nucleus and therefore to study the evolution of the fission yields with temperature. The realization of this kind of experiment requires a complex experimental setup, providing full isotopic identification of both fission fragments and an accurate measurement of the momenta of the two outgoing protons. This was realized recently at the GSI/FAIR facility and here some preliminary results are presented

    Comprehensive investigation of fission yields by using spallation- and (p,2p)-induced fission reactions in inverse kinematics

    Full text link
    In the last decades, measurements of spallation, fragmentation and Coulex induced fission reactions in inverse kinematics have provided valuable data to accurately investigate the fission dynamics and nuclear structure at large deformations of a large variety of stable and non-stable heavy nuclei. To go a step further, we propose now to induce fission by the use of quasi-free (p,2p) scattering reactions in inverse kinematics, which allows us to reconstruct the excitation energy of the compound fissioning system by using the four-momenta of the two outgoing protons. Therefore, this new approach might permit to correlate the excitation energy with the charge and mass distributions of the fission fragments and with the fission probabilities, given for the first time direct access to the simultaneous measurement of the fission yield dependence on temperature and fission barrier heights of exotic heavy nuclei, respectively. The first experiment based on this methodology was realized recently at the GSI/FAIR facility and a detailed description of the experimental setup is given here.Comment: 4 pages, 15th International Conference on Nuclear Data for Science and Technology (ND2022

    Quasi-free (p,2p) reactions in inverse kinematics for studying the fission yield dependence on temperature

    No full text
    International audienceDespite the recent experimental and theoretical progress in the investigation of the nuclear fission process, a complete description still represents a challenge in nuclear physics because it is a very complex dynamical process, whose description involves the coupling between intrinsic and collective degrees of freedom, as well as different quantum-mechanical phenomena. To improve on the existing data on nuclear fission, we produce fission reactions of heavy nuclei in inverse kinematics by using quasi-free (p,2p) scattering, which induce fission through particle-hole excitations that can range from few to ten's of MeV. The measurement of the four-momenta of the two outgoing protons allows to reconstruct the excitation energy of the fissioning compound nucleus and therefore to study the evolution of the fission yields with temperature. The realization of this kind of experiment requires a complex experimental setup, providing full isotopic identification of both fission fragments and an accurate measurement of the momenta of the two outgoing protons. This was realized recently at the GSI/FAIR facility and here some preliminary results are presented

    Quasi-free (p,2p) reactions in inverse kinematics for studying the fission yield dependence on temperature

    No full text
    Despite the recent experimental and theoretical progress in the investigation of the nuclear fission process, a complete description still represents a challenge in nuclear physics because it is a very complex dynamical process, whose description involves the coupling between intrinsic and collective degrees of freedom, as well as different quantum-mechanical phenomena. To improve on the existing data on nuclear fission, we produce fission reactions of heavy nuclei in inverse kinematics by using quasi-free (p,2p) scattering, which induce fission through particle-hole excitations that can range from few to ten's of MeV. The measurement of the four-momenta of the two outgoing protons allows to reconstruct the excitation energy of the fissioning compound nucleus and therefore to study the evolution of the fission yields with temperature. The realization of this kind of experiment requires a complex experimental setup, providing full isotopic identification of both fission fragments and an accurate measurement of the momenta of the two outgoing protons. This was realized recently at the GSI/FAIR facility and here some preliminary results are presented

    Quasi-free (p,2p) reactions in inverse kinematics for studying the fission yield dependence on temperature

    No full text
    International audienceDespite the recent experimental and theoretical progress in the investigation of the nuclear fission process, a complete description still represents a challenge in nuclear physics because it is a very complex dynamical process, whose description involves the coupling between intrinsic and collective degrees of freedom, as well as different quantum-mechanical phenomena. To improve on the existing data on nuclear fission, we produce fission reactions of heavy nuclei in inverse kinematics by using quasi-free (p,2p) scattering, which induce fission through particle-hole excitations that can range from few to ten's of MeV. The measurement of the four-momenta of the two outgoing protons allows to reconstruct the excitation energy of the fissioning compound nucleus and therefore to study the evolution of the fission yields with temperature. The realization of this kind of experiment requires a complex experimental setup, providing full isotopic identification of both fission fragments and an accurate measurement of the momenta of the two outgoing protons. This was realized recently at the GSI/FAIR facility and here some preliminary results are presented

    Fission studies in inverse kinematics with the R3B setup

    No full text
    International audienceNuclear fission is a complex dynamical process, whose description involves the coupling between intrinsic and collective degrees of freedom, as well as different quantum-mechanical phenomena. For this reason, to this day it still lacks a satisfactory and complete microscopic description. In addition to the importance of describing fission itself, studies of the r-process in astrophysics depend on fission observables to constrain the theoretical models that explain the isotopic abundances in the Universe. To improve on the existing data, fission reactions of heavy nuclei in inverse kinematics are produced in quasi-free (p,2p) scattering reactions, which induce fission through particle-hole excitations that can range from few to tens of MeV. In order to study the evolution of the fission yields with temperature, the excitation energy of the fissioning system must be reconstructed, which is possible by measuring the four-momenta of the two outgoing protons. Performing this kind of experiment requires a complex experimental setup, providing full isotopic identification of both fission fragments and an accurate measurement of the momenta of the two outgoing protons. This was realized recently at the GSI/FAIR facility and some of the results obtained for the charge distributions are presented in this work

    Comprehensive investigation of fission yields by using spallation- and (p,2p)-induced fission reactions in inverse kinematics

    No full text
    International audienceIn the last decades, measurements of spallation, fragmentation and Coulex induced fission reactions in inverse kinematics have provided valuable data to accurately investigate the fission dynamics and nuclear structure at large deformations of a large variety of stable and non-stable heavy nuclei. To go a step further, we propose now to induce fission by the use of quasi-free (p,2p) scattering reactions in inverse kinematics, which allows us to reconstruct the excitation energy of the compound fissioning system by using the four-momenta of the two outgoing protons. Therefore, this new approach might permit to correlate the excitation energy with the charge and mass distributions of the fission fragments and with the fission probabilities, given for the first time direct access to the simultaneous measurement of the fission yield dependence on temperature and fission barrier heights of exotic heavy nuclei, respectively. The first experiment based on this methodology was realized recently at the GSI/FAIR facility and a detailed description of the experimental setup is given here

    Comprehensive investigation of fission yields by using spallation- and (p,2p)-induced fission reactions in inverse kinematics

    No full text
    International audienceIn the last decades, measurements of spallation, fragmentation and Coulex induced fission reactions in inverse kinematics have provided valuable data to accurately investigate the fission dynamics and nuclear structure at large deformations of a large variety of stable and non-stable heavy nuclei. To go a step further, we propose now to induce fission by the use of quasi-free (p,2p) scattering reactions in inverse kinematics, which allows us to reconstruct the excitation energy of the compound fissioning system by using the four-momenta of the two outgoing protons. Therefore, this new approach might permit to correlate the excitation energy with the charge and mass distributions of the fission fragments and with the fission probabilities, given for the first time direct access to the simultaneous measurement of the fission yield dependence on temperature and fission barrier heights of exotic heavy nuclei, respectively. The first experiment based on this methodology was realized recently at the GSI/FAIR facility and a detailed description of the experimental setup is given here

    Fission studies in inverse kinematics with the R3B setup

    No full text
    International audienceNuclear fission is a complex dynamical process, whose description involves the coupling between intrinsic and collective degrees of freedom, as well as different quantum-mechanical phenomena. For this reason, to this day it still lacks a satisfactory and complete microscopic description. In addition to the importance of describing fission itself, studies of the r-process in astrophysics depend on fission observables to constrain the theoretical models that explain the isotopic abundances in the Universe. To improve on the existing data, fission reactions of heavy nuclei in inverse kinematics are produced in quasi-free (p,2p) scattering reactions, which induce fission through particle-hole excitations that can range from few to tens of MeV. In order to study the evolution of the fission yields with temperature, the excitation energy of the fissioning system must be reconstructed, which is possible by measuring the four-momenta of the two outgoing protons. Performing this kind of experiment requires a complex experimental setup, providing full isotopic identification of both fission fragments and an accurate measurement of the momenta of the two outgoing protons. This was realized recently at the GSI/FAIR facility and some of the results obtained for the charge distributions are presented in this work
    corecore