589 research outputs found

    s-Process Nucleosynthesis in Advanced Burning Phases of Massive Stars

    Full text link
    We present a detailed study of s-process nucleosynthesis in massive stars of solar-like initial composition and masses 15, 20,25, and 30 Msun. We update our previous results of s-process nucleosynthesis during the core He-burning of these stars and then focus on an analysis of the s-process under the physical conditions encountered during the shell-carbon burning. We show that the recent compilation of the Ne22(alpha,n)Mg25 rate leads to a remarkable reduction of the efficiency of the s-process during core He-burning. In particular, this rate leads to the lowest overproduction factor of Kr80 found to date during core He-burning in massive stars. The s-process yields resulting from shell carbon burning turn out to be very sensitive to the structural evolution of the carbon shell. This structure is influenced by the mass fraction of C12 attained at the end of core helium burning, which in turn is mainly determined by the C12(alpha,gamma)O16 reaction. The still present uncertainty in the rate for this reaction implies that the s-process in massive stars is also subject to this uncertainty. We identify some isotopes like Zn70 and Rb87 as the signatures of the s-process during shell carbon burning in massive stars. In determining the relative contribution of our s-only stellar yields to the solar abundances, we find it is important to take into account the neutron exposure of shell carbon burning. When we analyze our yields with a Salpeter Initial Mass Function, we find that massive stars contribute at least 40% to s-only nuclei with mass A 90, massive stars contribute on average ~7%, except for Gd152, Os187, and Hg198 which are ~14%, \~13%, and ~11%, respectively.Comment: 52 pages, 16 figures, accepted for publication in Ap

    The influence of backward wave transmission on quantitive ultrasonic evaluation using Lamb wave propagation

    Get PDF
    In view of the various novel quantitative ultrasonic evaluation techniques developed using Lamb wave propagation, the influence of an important related phenomenon, backward transmission, is investigated in this paper. Using the discrete layer theory and a multiple integral transform method, the surface displacement and velocity responses of isotropic plates and cross-ply laminated composite plates due to the Lamb waves excited by parabolic- and piston-type transmitting transducers are evaluated. Analytical expressions for the surface displacement and velocity frequency response functions are developed. Based on this a large volume of calculations is carried out. Through examining the characteristics of the surface displacement and velocity frequency response functions and, especially, the different propagation modes’ contributions to them, the influence of the backward wave transmission related to quantitative ultrasonicnondestructive evaluation applications is discussed and some important conclusions are drawn

    Gamma-Ray Constraints on the Galactic Supernova Rate

    Get PDF
    Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission

    Iron Implantation in Presolar Supernova Grains

    Get PDF
    We consider the potential of measured iron isotopic ratios within presolar grains from supernovae (as discovered in meteorites) for identifying the gas from which the grains condensed. We show that although iron isotopic ratios vary dramatically with radial coordinate in the initial supernova, it seems likely that the concentration of iron that thermally condenses in SiC grains within the supernova interior may be smaller than the concentration that will later be implanted by high-speed grain-gas collisions following the penetration of the reverse shock into the supernova flow. In that case, the Fe isotopic composition is much altered. We propose that the 58Fe richness that is very evident in the three SiC grains analyzed to date is the result of ion implantation during the grain’s rapid radial motion through the shocked and decelerated overlying supernova gas that is 58Fe-rich. We point to other likely applications of this same idea and speculate that only the dominant isotopes of the SiC grains, namely 28Si and 12C, can be safely assumed to be initial thermal condensate. We conclude that a violent period of implantation plus sputtering has overprinted the initial thermal condensate. If correct, this points to a new technique for sampling the velocity mixing within young supernova remnants

    Single-trial event-related potential extraction through one-unit ICA-with-reference.

    Get PDF
    Objective: In recent years, ICA has been one of the more popular methods for extracting event-related potential (ERP) at the single-trial level. It is a blind source separation technique that allows the extraction of an ERP without making strong assumptions on the temporal and spatial characteristics of an ERP. However, the problem with traditional ICA is that the extraction is not direct and is time-consuming due to the need for source selection processing. In this paper, the application of an one-unit ICA-with-Reference (ICA-R), a constrained ICA method, is proposed. Approach: In cases where the time-region of the desired ERP is known a priori, this time information is utilized to generate a reference signal, which is then used for guiding the one-unit ICA-R to extract the source signal of the desired ERP directly. Main results: Our results showed that, as compared to traditional ICA, ICA-R is a more effective method for analysing ERP because it avoids manual source selection and it requires less computation thus resulting in faster ERP extraction. Significance: In addition to that, since the method is automated, it reduces the risks of any subjective bias in the ERP analysis. It is also a potential tool for extracting the ERP in online application

    Multi-faced neuroprotectice effects of Ginsenoside Rg1 in an Alzheimer mouse model

    Get PDF
    There has been no extensive characterization of the effects of Ginsenoside Rg1, a pharmacological active component purified from the nature product ginseng, in an Alzheimer's disease mouse model. The well-characterized transgenic Alzheimer disease (AD) mice over expressing amyloid precursor protein (APP)/Aβ (Tg mAPP) and nontransgenic (nonTg) littermates at age of 6 and 9 months were treated with Rg 1 for three months via intraperitoneal injection. Mice were then evaluated for changes in amyloid pathology, neuropathology and behavior. Tg mAPP treated with Rg1 showed a significant reduction of cerebral Aβ levels, reversal of certain neuropathological changes, and preservation of spatial learning and memory, as compared to vehicle-treated mice. Rg1 treatment inhibited activity of γ-secretase in both Tg mAPP mice and B103-APP cells, indicating the involvement of Rg1 in APP regulation pathway. Furthermore, administration of Rg1 enhanced PKA/CREB pathway activation in mAPP mice and in cultured cortical neurons exposed to Aβ or glutamate-mediated synaptic stress. Most importantly, the beneficial effects on attenuation of cerebral Aβ accumulation, improvement in neuropathological and behavioral changes can be extended to the aged mAPP mice, even to 12–13 months old mice that had extensive amyloid pathology and severe neuropathological and cognitive malfunction. These studies indicate that Rg1 has profound multi-faced and neuroprotective effects in an AD mouse model. Rg1 induces neuroprotection through ameliorating amyloid pathology, modulating APP process, improving cognition, and activating PKA/CREB signaling. These findings provide a new perspective for the treatment of AD and demonstrate potential for a new class of drugs for AD treatment

    Multi-faced neuroprotectice effects of Ginsenoside Rg1 in an Alzheimer mouse model

    Get PDF
    There has been no extensive characterization of the effects of Ginsenoside Rg1, a pharmacological active component purified from the nature product ginseng, in an Alzheimer's disease mouse model. The well-characterized transgenic Alzheimer disease (AD) mice over expressing amyloid precursor protein (APP)/Aβ (Tg mAPP) and nontransgenic (nonTg) littermates at age of 6 and 9 months were treated with Rg 1 for three months via intraperitoneal injection. Mice were then evaluated for changes in amyloid pathology, neuropathology and behavior. Tg mAPP treated with Rg1 showed a significant reduction of cerebral Aβ levels, reversal of certain neuropathological changes, and preservation of spatial learning and memory, as compared to vehicle-treated mice. Rg1 treatment inhibited activity of γ-secretase in both Tg mAPP mice and B103-APP cells, indicating the involvement of Rg1 in APP regulation pathway. Furthermore, administration of Rg1 enhanced PKA/CREB pathway activation in mAPP mice and in cultured cortical neurons exposed to Aβ or glutamate-mediated synaptic stress. Most importantly, the beneficial effects on attenuation of cerebral Aβ accumulation, improvement in neuropathological and behavioral changes can be extended to the aged mAPP mice, even to 12–13 months old mice that had extensive amyloid pathology and severe neuropathological and cognitive malfunction. These studies indicate that Rg1 has profound multi-faced and neuroprotective effects in an AD mouse model. Rg1 induces neuroprotection through ameliorating amyloid pathology, modulating APP process, improving cognition, and activating PKA/CREB signaling. These findings provide a new perspective for the treatment of AD and demonstrate potential for a new class of drugs for AD treatment

    Study of Radiative Leptonic D Meson Decays

    Full text link
    We study the radiative leptonic DD meson decays of D^+_{(s)}\to \l^+\nu_{\l}\gamma (\l=e,\mu,\tau), D0ννˉγD^0\to \nu\bar{\nu}\gamma and D^0\to \l^+\l^-\gamma (l=e,μl=e,\mu) within the light front quark model. In the standard model, we find that the decay branching ratios of D(s)+e+νeγD^+_{(s)}\to e^+\nu_e\gamma, D(s)+μ+νμγD^+_{(s)}\to\mu^+\nu_{\mu}\gamma and D(s)+τ+ντγD^+_{(s)}\to\tau^+\nu_{\tau}\gamma are 6.9×1066.9\times 10^{-6} (7.7×1057.7\times 10^{-5}), 2.5×1052.5\times 10^{-5} (2.6×1042.6\times 10^{-4}), and 6.0×1066.0\times 10^{-6} (3.2×1043.2\times 10^{-4}), and that of D^0\to\l^+\l^-\gamma (\l=e,\mu) and D0ννˉγD^0\to\nu\bar{\nu}\gamma are 6.3×10116.3\times 10^{-11} and 2.7×10162.7\times 10^{-16}, respectively.Comment: 23 pages, 6 Figures, LaTex file, a reference added, to be published in Mod. Phys. Lett.
    corecore