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In view of the various novel quantitative ultrasonic evaluation techniques developed using Lamb
wave propagation, the influence of an important related phenomenon, backward transmission, is
investigated in this paper. Using the discrete layer theory and a multiple integral transform method,
the surface displacement and velocity responses of isotropic plates and cross-ply laminated
composite plates due to the Lamb waves excited by parabolic- and piston-type transmitting
transducers are evaluated. Analytical expressions for the surface displacement and velocity
frequency response functions are developed. Based on this a large volume of calculations is carried
out. Through examining the characteristics of the surface displacement and velocity frequency
response functions and, especially, the different propagation modes’ contributions to them, the
influence of the backward wave transmission related to quantitative ultrasonic nondestructive
evaluation applications is discussed and some important conclusions are drawn. ©2000 Acoustical
Society of America.@S0001-4966~99!04212-5#
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INTRODUCTION

In recent years, the use of Lamb wave propagation
develop modern quantitative ultrasonic evaluation techniq
has attracted rapidly growing interest for various purpos
for example, quick inspection of long gas or petroleum p
lines, evaluation of complex damage state of compo
structures and even real-time monitoring of composite ma
facturing processes. Consequently, a clear understandin
the characteristics of the wave propagation involved is v
important for the interpretation of measurement results
well as for the further optimization of the correspondi
measurement techniques.

There has been a considerable amount of investiga
on general characteristics of Lamb wave propagation,
example, Refs. 1–8. However, investigation of an import
phenomenon related to the Lamb wave propagation, nam
backward wave transmission, is still limited. Based on
frequency equation for isotropic plates or cylinders, so
researchers such as Tolstoyet al.9 first predicted the pres
ence of backward wave motion in which phase and gro
velocities have opposite signs. This means that energ
carried in a direction opposite to the motion of the wav
Several years later Meitzler10 reported his experimental ob
servations to give evidence of this interesting prediction a
also gave an interpretation by comparing the displacem

a!Electronic mail: e2kitip@brolga.uq.edu.au
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components, stress components, and the average energ
density for the forward and backward motions. After th
Torvik11 reconfirmed the presence of backward wave mot
for a limited range of frequency during his investigation
the reflection of an infinite train of waves from the free ed
of an isotropic plate. He also found that there exists a criti
frequency in the second mode~nonpropagating mode! well
below the first cutoff frequency near which the wave refle
tion coefficient experiences a sharp resonance in amplitu

Considering the abnormal properties discovered
backward wave transmission in isotropic plates, the influe
of backward waves involved in some quantitative ultraso
evaluation techniques such as acousto-ultrasonics or s
wave factor technique for composite laminates is conside
in this paper. Using discrete layer theory and a multiple
tegral transform method, the surface displacement and ve
ity responses of isotropic plates and cross-ply compo
laminated plates due to Lamb waves excited by contact-t
transducers such as adhesively bonded piezoceramic t
ducers are evaluated. Analytical expressions for the sur
displacement and velocity frequency response functions
developed. Based on this, numerical calculations are car
out to examine the influence of backward wave transmiss
related to ultrasonic nondestructive evaluation application

I. FORMULATION OF THE PROBLEM

Consider a transmitting transducer attached to the up
surface of a composite laminated plate of thicknessh as
3060/107(1)/9/$17.00 © 2000 Acoustical Society of America
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shown in Fig. 1. It is assumed that the surface displacem
or velocity is to be measured at another position. A Cartes
coordinate system~x,y,z! with origin on the upper surface o
the laminate is introduced. Each lamina is modeled a
transversely isotropic material. For simplicity, we confi
our attention to cross-ply laminates with the three axes c
ciding with the axes of orthotropy and a plane strain con
tion with they axis being perpendicular to the plane. Then,
the absence of body forces, the basic governing equation
the i th lamina bounded byz5zi andz5zi 11 are

H sxx

szz

sxz

J 5F c11 c13 0

c13 c33 0

0 0 c55

G H exx

ezz

gxz

J , ~1!

exx5
]u

]x
, ezz5

]w

]z
, gxz5

]u

]z
1

]w

]x
, ~2!

]sxx

]x
1

]sxz

]z
5r

]2u

]t2 , ~3a!

]sxz

]x
1

]szz

]z
5r

]2w

]t2 , ~3b!

szzuz5052p1~x,t !, ~4a!

sxzuz5052p2~x,t !, ~4b!

wheres i j and e i j are stress and strain components, resp
tively; u andw denote displacement components inx andz
axis directions, respectively;ci j and r are elements of the
constitutive matrix and density of thei th lamina, respec-
tively; t denotes the time variable; andp1(x,t) and p2(x,t)
represent the distributed traction excited by the transmit
transducer.

An approximate approach called the stiffne
method12–14 or discrete layer method15 is used to solve the
above equations. The essence of the method is to divide
plate into a number of mathematical layers in the thickn
direction so that the variation of the displacements throu
the thickness of each layer can be approximated by var
polynomials using interpolation for some unknown displa
ments. Using the principle of virtual work, the differenti
equations of the wave motion in the plate can then be
pressed in a form in which there is no differentiation w
respect to the variable in the thickness direction.

Following the procedure described in Refs. 12–15, i
assumed that the plate, as shown in Fig. 1, is divided intN
mathematical layers. For thei th layer, the vector of displace
ments at an arbitrary point denoted byUi(x,z)
5@ui(x,z),wi(x,z)#T is expressed by a quadratic polynom
interpolation as

FIG. 1. The problem considered in this paper.
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Ui5~x,z!5Nqi , ~5!

where the matrixq, a displacement vector composed of t
displacement vectors for the upper surface, the middle pl
and the lower surface of thei th layer, and the matrixN, the
corresponding shape function, can be expressed as

qi
T5@Ui

Tuh50 ,Ui
Tuh51/2,Ui

Tuh51#, ~6!

N5@2h223h11!I ,~24h214h!I ,~2h22h!I ], ~7!

in which I is a 232 identity matrix andh is the normalized
measure for thei th layer defined by

h5~z2ziu!/hi , ~8!

whereziu andhi are thez coordinate of the upper surface an
the thickness of thei th layer, respectively.

Applying the principle of virtual work to thei th layer,
we have

dqi
TT i5dqi

TSi1E
ziu

ziu1hi
dUi

T~r iÜi2L ts i2f i !dz, ~9!

with

s i
T5@sxx ,szz,sxz#, ~10a!

f i
T5@ f x , f z#, ~10b!

Si
T5@2sxzuh50,2szzuh50,0,0,sxzuh51 ,szzuh51#, ~10c!

T i
T5@pxzuh50 ,pzzuh50 ,pxzuh51/2,pzzuh51/2,

pxzuh51 ,pzzuh51], ~10d!

LT5F ]

]x
0

]

]z

0
]

]z

]

]x

G , ~10e!

wheres i , f i , Si andT i represent the stress vector, the bo
force vector, the upper and lower interface traction vec
and the probable external load vector for thei th layer, re-
spectively. Herepxz andpzz are the shear and normal exte
nal traction.r i is its mass density. The symbol ‘‘•’’ indicates
differentiation with respect to time.

Substituting Eqs.~5!–~7! into Eq.~9! and using the gen-
eral relations among stresses, strains and displacements
governing equation for thei th layer can be expressed as

M ~ i !
]2

]t2 qi1F2K1
~ i !

]2

]x2 2K4
~ i !

]

]x
1K6

~ i !Gqi5T i , ~11!

whereM ( i ), K1
( i ) , K4

( i ) andK6
( i ) and 636 matrices which are

given in the Appendix~item 1!. In the derivation of Eq.~11!,
it is assumed that no body forces exist.

In the same way, obtaining all the governing equatio
for theN layers, and then assembling them from the top la
to the bottom layer, the governing equation for the lamina
plate can be finally expressed as

M
]2

]t2 q1F2K1

]2

]x2 2K4

]

]x
1K6Gq5T, ~12!
307Liu et al.: Ultrasonic waves in layered plates

content/terms. Download to IP:  130.102.158.19 On: Thu, 29 Oct 2015 01:46:57



fs
b
b
c

he

er

th
e
-

th

s

fol-

r

,

q.

eral

 Redistr
where q, T, M , K1 , K4 , and K6 are the global matrices
produced by assemblingqi , T i , M ( i ), K1

( i ) , K4
( i ) and K6

( i )

( i 51,2,3,...,N), respectively.
In order to simplify the problem, as presented in Re

16 and 17 it is assumed that the pressure distribution
tween the transducer and the plate can be approximated
piston distribution or a parabolic distribution. The conta
pressurepi(x,t) exerted on the surface of the plate by t
transducer can therefore be expressed as

pi~x,t !5@H~x1a!2H~x2a!#D~x,a!pi~ t !, i 51,2,
~13!

in which a is the aperture of the transmitting transduc
H(x) stands for the Heaviside function,pi(t)( i 51,2) are the
normal and tangential forces exerted on the plate by
transmitting transducer, andD(x,a) is the contact pressur
distribution function which for a piston distribution is de
fined as

D~x,a!5H 1, uxu<a,

0, uxu.a,
~14!

and for a parabolic distribution as

D~x,a!5H 3
2@12~x/a!2#, uxu<a,

0, uxu.a.
~15!

The resultant force is the same in both cases.
Expressing the above contact pressure in the form of

external load vector given in~12! yields to

T5p1~x,t !C11p2~x,t !C2 ~16!

whereC1 andC2 are constant vectors of length 2(2N11),
which are given by

C1
T5@0,1,0,0,...,0#, ~17a!

C2
T5@1,0,0,0,...,0#. ~17b!

II. FREQUENCY DOMAIN SOLUTION AND INVERSION

Applying the Fourier time transform and spatial tran
form defined as

ḡ~x,v!5E
0

`

g~x,t !e2 ivtdt, ~18!

g̃~k,t !5E
2`

1`

g~x,t !e2 ikxdx, ~19!

to Eqs.~12! on t andx, respectively, we have

~k2K12 ikK41K62v2M ! q̃̄5 T̃̄. ~20!

Solving the above equation yields to18

q̃̄5 i (
m51

2M
cml

T T̃̄

~k2km!cm
T Rwm

wmu , ~21!
308 J. Acoust. Soc. Am., Vol. 107, No. 1, January 2000
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where M52(2N11) and km5 ilm . wm , cm and lm ~m
51 to 2M ! are the eigenvectors and eigenvalues of the
lowing two characteristic equations:

~Q2lR!w50, ~22a!

~QT2lRT!c50 ~22b!

in which

Q5F 0 I

v2M2K6 2K4
G , ~23a!

R5F I 0

0 2K1
G , ~23b!

where I is an identity matrix of the same dimension asM ,
K1 , K4 , and K6 . wmu and cml are the upper and lowe
halves of the eigenvectorswm andcm , respectively.

Substituting Eqs.~13!–~15! to Eq. ~16! and then apply-
ing the Fourier transformations~18! and ~19! to resulting
equation on variablet andx, respectively, yields

T̃̄5 p̄1~v!I ~k!C11 p̄2~v!I ~k!C2 , ~24!

in which I (k) is given as for piston-type force distribution

I ~k!5 i @eik~x2a!2eik~x1a!#/k, x.a, ~25a!

and for parabolic-type force distribution,

I ~k!53@~ i 2ka!eik~x2a!2~ i 1ka!eik~x1a!#/~k3a2!],

x.a. ~25b!

Applying the inverse Fourier spatial transform of E
~19! to Eqs.~21! and ~24!, we have

q̄~x!5q̄11q̄2 ~26!

with

q̄j5
i

2p
p̄ j~v!E

2`

`

(
m51

2M I ~k!cml
T Cj

~k2km!cm
T Rwm

wmudk,

j 51,2 . ~27!

Considering the real measurements, from the gen
displacement expression~26!, the frequency domain solution
of the top surface displacementw(x,0,t) and velocity
V(x,0,t) of the plate are expressed as

w̄~x,0,v!5G1~v!p̄1~v!1G2~v!p̄2~v!, ~28!

V̄~x,0,v!52 ivG1~v! p̄1~v!2 ivG2~v! p̄2~v!, ~29!

in which

Gj~v!5
i

2p E
2`

`

(
m51

2M
~cml

T Cj !~wmu
T C1!

~k2km!cm
T Rwm

I ~k!dk,

j 51,2, ~30a!

H j~v!52 ivGj~v!, j 51,2. ~30b!

Applying the contour integration technique19 to Eq.
~30a!, Gj (v) can be simplified as
308Liu et al.: Ultrasonic waves in layered plates
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TABLE I. Engineering constants of two types of plates used in the calculation.

Material E1 ~Gpa! E2 ~Gpa! G12 ~Gpa! G13 ~Gpa! G23 ~Gpa! n12 r ~Kg/m3!

Aluminum 73 73 28.077 28.077 28.077 0.3 2770
Glass/epoxy 38.612 8.274 4.137 4.137 3.448 0.26 180
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Gj~v!52 (
m51

Mi ~cml
T Cj !~wmu

T C1!

cm
T Rwm

I ~km!

2 (
m51

Mc ~cml
T Cj !~wmu

T C1!

cm
T Rwm

I ~km!, j 51,2, ~31!

whereMr is the number of the real wave modes with po
tive group velocities, i.e., carrying energy towards the po
tive x-axis direction, andMc is the number of complex wav
modes corresponding to thekm with Im(km).0.

In view of Eqs. ~28! and ~29! G1(v), G2(v) and
H1(v), H2(v) can be called the displacement and veloc
frequency response functions corresponding to the nor
traction and shear traction excited by the transmitting tra
ducer.

Applying the inverse Fourier time transformation to t
frequency domain solution Eqs.~28! and ~29!, the time do-
main solution of the surface displacement and velocities
be expressed as

w~x,0,t !5E
2`

`

@G1~v!p̄1~v!1G2~v!p̄2~v!#eivtdv,

~32a!

V~x,0,t !5E
2`

`

@H1~v! p̄1~v!1H2~v! p̄2~v!#eivtdv.

~32b!

The computation of Eqs.~32a! and ~32b! can be carried ou
using the fast Fourier transform~FFT! technique.

III. THE SOLUTION BASED ON SIMPLIFED THEORIES

Although simplified plate theories such as the class
plate theory and the Mindlin plate theory cannot be used
examine backward wave transmission, they are still us
for result comparison or program check in low-frequen
regions. In this section, the corresponding solution based
the Mindlin plate theory is presented.

Using the same coordinate system as above, the e
tions of the motion for the plate in a state of plane str
parallel to thex-z plane are

kA55S ]wx

]x
1

]2w

]w2D1p15rh
]2w

]t2 , ~33a!

D11

]2wx

]x2 2kA55S wx1
]w

]x D5
rh3

12

]2wx

]t2 , ~33b!

wherew is the transverse displacement;wx is the rotation of
the plane section perpendicular to thex axis; p1 is seen in
Eq. ~13!; k(5p2/12) is a shear correction factor; andA55

andD11 are the plate transverse-shear and plate bendin
oc. Am., Vol. 107, No. 1, January 2000
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A555 (
k51

N

Q̄55
~k!~ z̄k112 z̄k!, ~34a!

D115
1

3 (
k51

N

Q̄11
~k!~ z̄k11

3 2 z̄k
3!, ~34b!

Q̄55
~k!5Q55

~k! cos2 uk1Q44
~k! sin2 uk , ~34c!

Q̄11
~k!5Q11

~k! cos4 uk1Q22
~k! sin4 uk , ~34d!

Q11
~k!5E1

~k!/~12n12
~k!n21

~k!!, ~34e!

Q22
~k!5n12

~k!E2
~k!/~12n12

~k!n21
~k!!, ~34f!

Q44
~k!5G23

~k! , ~34g!

Q55
~k!5G13

~k! , ~34h!

n21
~k!5n12

~k!E2
~k!/E1

~k! , ~34i!

wherez̄k5zk2h/2, Qii
(k) ( i 51,2,4,5) is the material stiffnes

constant ofkth layer,uk is the angle between the fiber dire
tion of kth layer and thex axis ~0 or 90 degrees!, andE1

(k) ,
E2

(k) , G13
(k) , G23

(k) , andn12
(k) are the engineering constants f

the kth layer.
Based on Eqs.~33a!, ~33b! and~13!–~15!, using a simi-

lar Fourier transformation procedure, the solution cor
sponding to Eq.~28! can be obtained as follows:

For parabolic source,

w̄~x,0,v!5 p̄1~v!@m11e
2 ik1~x2a!1m12e

ik1~x1a!

1m21e
2g~x2a!1m22e

2g~x1a!#, uvu,vc,

~35a!

w̄~x,0,v!5 p̄1~v!@m11e
2 ik1~x2a!1m12e

2 ik1~x1a!

1m21e
2 ik2~x2a!1m22e

2 ik2~x1a!#, uvu>vc .

~35b!

For piston source,

w̄~x,0,v!5 p̄1~v!$n1@e2 ik1~x2a!2e2 ik1~x1a!#

1n2@e2g~x2a!2e2g~x1a!#%, uvu,vc ,

~36a!

w̄~x,0,v!5 p̄1~v!$n1@e2 ik1~x2a!2e2 ik1~x1a!#

1n2@e2 ik2~x2a!2eik2~x1a!#%, uvu>vc ,

~36b!

where the coefficientsm i j , n i ( i j 51,2) are given in the Ap-
pendix~item 2!, and the cutoff frequencyvc and wave num-
ber k1 andk2 are given by
309Liu et al.: Ultrasonic waves in layered plates
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k15F1

2 S 1

c0
2 1

1

cs
2Dv21A1

4 S 1

c0
22

1

cs
2D 2

v41
1

c0
2a2 v2G1/2

,

uvu,`, ~37!

k25 ig for uvu<vc , ~38a!

k25F1

2 S 1

c0
2 1

1

cs
2Dv22A1

4 S 1

c0
22

1

cs
2D 2

v41
1

c0
2a2 v2G1/2

for uvu.vc , ~38b!

in which

g5FA1

4 S 1

c0
22

1

cs
2D 2

v41
1

c0
2a2 v2

2
1

2 S 1

c0
2 1

1

cs
2Dv2G1/2

, ~39a!

c05A12D11

rh3 , ~39b!

cs5AA55k

rh
, ~39c!

a5
h

A12
, ~39d!

vc5A12A55k

rh3 . ~39e!

FIG. 2. Time history of the surface displacement evaluated by the disc
layer theory~thin line! and Mindlin plate theory~thick line! ~composite plate
0/90/0, h52 nm, x5100 mm; parabolic sourcea55 mm, f 050.125
MHz, n052; f c50.368 MHz!.

FIG. 3. Time history of the surface displacement evaluated by the disc
layer theory ~composite plate 0/90/0,h52 mm, x5100 mm; parabolic
sourcea55 mm, f 050.4 MHz, n052; f c50.368 MHz!.
310 J. Acoust. Soc. Am., Vol. 107, No. 1, January 2000
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Similarly, applying the inverse Fourier time transformatio
to Eqs.~35a!, ~35b!, ~36a!, and~36b!, the time domain solu-
tions of the surface displacement can be obtained.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, based on the above analytical formu
tions, some numerical calculations are carried out to exam
the characteristics of backward wave motion and its infl
ence on the surface displacement and velocity response
the plate interrogated by the transmitting transducer.

Two types of materials were used in the calculatio
One is an isotropic aluminum, and the other is a glass/ep
composite. Their engineering material constants are give
Table I.

Also, in the calculation the input pulse used is the d
layed sine pulse with Haning window, i.e.,

pi~ t !5H 0.5@12cos~2p f 0t/n0!#cos~2p f 0t !, t<n0 / f 0 ,

0, t.n0 /f0 ,
~40!

where f 0 is the central frequency andn0 is the number of
periods.

As a program check, the surface displacement respo
of a composite laminate~0°/90°/0°! of thicknessh52 mm
due to parabolic source pulse is evaluated by both the
crete layer theory and the Mindlin plate theory. Figure
shows both results for low-frequency input~the dominant
frequency is 0.125 MHz!. It is seen that they are very clos
to each other. Using the same program the results for r
tively high-frequency input~the dominant frequency is 0.4
MHz! are evaluated by the two theories in Figs. 3 and
respectively. For this frequency range the results of the
analysis models show some differences. It is evident that
above results are reasonable, considering the approxima
involved in the Mindlin plate theory. This demonstrates,
some extent, the validity of the analysis and the compu
program. Based on this, the backward wave motion cha
teristics and its influence are examined in the following pa
graphs.

The dispersion curves for the aluminum plate which c
be obtained by solving characteristic equation~22a! or ~22b!,

te

te

FIG. 4. Time history of the surface displacement evaluated by the Min
plate theory ~composite plate 0/90/0,h52 mm, x5100 mm; parabolic
sourcea55 mm, f 050.4 MHz, n052; f c50.368 MHz!.
310Liu et al.: Ultrasonic waves in layered plates
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are shown in Fig. 5. Since the wave numberk and the fre-
quencyv have been normalized byV5vh/cs and g5kh,
respectively, wherecs5AG/r with G andr being the shear
modulus and the mass density, the dispersion curves
tained are valid for a wide range of isotropic plate cases
long as the Possion’s ration50.3. In this figure, the back
ward wave branch is marked byB1B2 , in which the phase
and group velocities are of opposite sign. It is necessar
point out that branchB1B2 here should be understood as
image with respect to theV axis, which has a positive grou
velocity. Additionally, for simplicity B1 and B2 are called
the beginning and end points of the backward wave regio
this paper, althoughB2 is usually called the cutoff frequenc
of the second symmetric real branch.

Referring to Eq.~28!, Fig. 6 shows the variation in am
plitude of the normalized displacement frequency respo
function G1(v) at two different surface points due to a no
mal pressure pulse transmitted by a parabolic source. T
are two singularities at the beginning and end points of
backward wave region, while at their two neighboring poin
A and C which are the first and second cutoff frequencies
antisymmetric modes there exist no singularities. This p
nomenon is useful for understanding the peaks in the co
sponding amplitude spectrum of a response signal when
input frequency covers this region. Additionally, it can al
be seen that in relatively high-frequency cases, the displ
ment frequency response function has larger amplit
within and near the backward wave region. This means
such regions Lamb waves can carry more energy. Howe

FIG. 5. The dispersion curves of normalized frequencyV5vh/cs and nor-
malized wave numberg5kh for an isotropic plate with Poisson’s ration
50.3.

FIG. 6. Surface displacement frequency response (GG1 /h;vh/cs) at two
different pointsx/h50.833~solid line! and 8.33~dashed line! on an isotro-
pic plate (n50.3) due to a normal pressure pulse transmitted by a parab
source (a/h50.5).
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since there are several wave branches which have diffe
group velocities, such regions will therefore cause more d
persion or distortion of time domain signals if many wa
modes are involved in measurements.

Under the same condition as in Fig. 6, the displacem
frequency response functionG2(v) due to a shear force
source is examined in Fig. 7. It is found that,~1! at the
beginning point of the backward wave region there still e
ists a singularity, and near this singularity pointG2(v) still
has higher amplitude, while at the end point there is onl
little discontinuity. ~2! At the points A and C which corre
spond to the cutoff frequencies of the second and third a
symmetric real branches, there occur small discontinuit
~3! Compared withG1(v), G2(v) is of smaller amplitude in
the low-frequency region.

In order to further understand the influence of backwa
wave transmission at the observation point farther away fr
the transmitting transducer, the contributions of different r
branches~i.e., the propagation modes! to the displacemen
frequency response function due to a normal pressure p
transmitted by a parabolic source are shown in Fig. 8. T
figure clearly shows that the backward wave branch cau
two singularities at its beginning and end points and, co
pared with other branches in this frequency region it h
apparently higher amplitude. This implies that the backw
wave branch makes the major contribution to the peak a
of the overall frequency spectrum when multiple wa
modes are excited as shown in Fig. 6. In other words,

ic

FIG. 7. Surface displacement frequency response function (GG2 /h
;vh/cs) at two different pointsx/h50.833 ~solid line! and 8.33~dashed
line! on an isotropic plate (n50.3) due to a shear force pulse transmitted
a parabolic source (a/h50.5).

FIG. 8. Contributions of different real branches to the surface displacem
frequency response function (GG1 /h;vh/cs) at x/h58.33 on an isotropic
plate (n50.3) due to a normal pressure pulse transmitted by a parab
source (a/h50.5) ~referring to Fig. 5!.
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peak area of the overall spectrum is dominated by the ba
ward wave mode. But, unfortunately, since the backw
wave mode has much smaller wave number, i.e., m
longer wave length~see Fig. 5! than other branches in thi
region, the backward wave propagation will decrease
overall sensitivity for damage detection in this frequency
gion. On the other hand, however, if the damage size c
cerned can be compared with the wave length of the ba
ward wave or long distance wave interrogation is requir
then the use of the single backward wave mode which ca
achieved by interdigital transducers could probably ha
some advantages because it appears that the backward
can be excited more efficiently.

The contributions of different real branches to the d
placement frequency response functionG1(v) due to a nor-
mal pressure pulse transmitted by a piston-type source h
also been examined. Compared with Fig. 8, it is found t
there is no apparent difference in the backward wave con
bution between the parabolic and piston source cases.

In consideration of the common use of the noncont
Doppler laser vibrometer system to measure surf
velocity,20 in Fig. 9 the frequency response function of su
face velocitiesH1(v) @see Eq.~29!# due to a normal pressur
pulse transmitted by a parabolic source is shown, and in
10 different real branches’ contributions toH1(v) for the
point farther away from the source are illustrated. The sa
behavior induced by the backward wave transmission in

FIG. 9. Surface velocity frequency response function (GH1 /h;vh/cs) at
two different pointsx/h50.833 ~solid line! and 8.33~dashed line! on an
isotropic plate (n50.3) due to a normal pressure pulse transmitted b
parabolic source (a/h50.5).

FIG. 10. Contributions of different real branches to the surface velo
frequency response function (GH1 /h;vh/cs) at x/h50.833 on an isotro-
pic plate (n50.3) due to a normal pressure pulse transmitted by a parab
source (a/h50.5) ~referring to Fig. 5!.
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case of surface displacement measurement can be foun
velocity measurement. So the above discussions about
backward transmission measured by surface displacem
also applies to the cases for velocity measurement. Howe
it is of interest to note thatH1(v) has relatively lower am-
plitude thanG1(v) in the low frequency region.

Figure 11 shows the normalized dispersion curves o
glass/epoxy composite plate laminated as~0°/90°/0°/90°/
0°!s. In Fig. 12 its surface velocity frequency response fu
tion due to normal pressure pulses transmitted by
parabolic-type transducer is presented. It can be seen tha
matter whether the plate is isotropic or orthotropic, the b
havior caused by the backward wave transmission is sim
This is because the characteristics of the dispersion curve
both cases are similar.

V. CONCLUSION

In this paper, in recognition of the various quantitati
ultrasonic evaluation techniques using Lamb waves propa
tion, the influence of backward wave transmission in isot
pic plates and cross-ply laminated composite plates has b
investigated. Using the discrete layer theory, the surface
placement and velocity responses due to the Lamb wa
excited by transmitting transducers have been evaluated.
pressions of the surface displacement and velocity freque
response functions have been presented. For compar
analytical results using the Mindlin plate theory have a
been developed. Based on the analytical results nume

a

y

ic

FIG. 11. The dispersion curves of normalized frequencyV5vh/AG12 /r
and normalized wave numberg5kh for a glass/epoxy composite laminate
plate @~0/90/0/90/0!s#.

FIG. 12. Surface velocity frequency response function (GH1 /h
;vh/AG12 /r) at point x/h510 on a glass/epoxy composite laminate
plate@~0/90/0/90/0!s# due to a normal pressure pulse transmitted by a pa
bolic source (a/h51).
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calculations were carried out to check the validity of t
analysis and then to examine the behavior of the backw
wave transmission. The following conclusions have be
drawn:

~1! For a moderately thick plate or relatively high-frequen
input pulses, there exists apparent backward wave tr
mission. It is essential to consider its influence in th
frequency regime for the development of guided wa
quantitative nondestructive evaluation techniques.

~2! At the beginning point of the backward wave region, t
normal surface displacement and velocity frequency
sponse functions have a singularity no matter whet
the transducer transmits normal forces or shear for
while at the end point a singularity occurs only for th
case of a normal pressure source. This is important
the interpretation of peak points in the output frequen
spectra.

~3! The backward wave branch carries much more ene
than other branches in the backward wave frequency
gime. This implies that the backward transmission,
one hand, will decrease the resolution of damage de
tion if the ultrasonic techniques involve multiple wav
modes and their input frequency cover this region sin
the corresponding wave lengths are large. On the o
hand, however, it could be an advantage for some sin
wave-mode related ultrasonic evaluation techniques.

~4! The surface displacement and velocity frequency
sponse functions have the same behavior in the ba
ward wave frequency region, e.g., relatively higher a
plitude, but in the low-frequency region, the former h
relatively higher amplitude than the latter.

~5! The presented figures for the different real branch
contributions to the surface displacement and veloc
frequency response functions are of significance for
lecting optimized input frequency regimes and the int
pretation of the corresponding measurement results.

~6! It should be noted that in the analysis presented in
paper no damping was introduced, so the conclusi
obtained above are only valid for structures with no
only small damping. For highly damped structural sy
tems, it is necessary to take into account the damp
influence when similar investigations are carried out.

APPENDIX

~1! The matrices in Eq.~11! for the i th layer are

M ~ i !5
1

30
hir iF 4I 2I 2I

16I 2I

Sym. 4I
G ,

K1
~ i !5

1

30
hiF 4A1 2A1 2A1

16A1 2A1

Sym. 4A1

G ,

K4
~ i !5

1

6 F 26B413A4 24A4 A4

0 24A4

Antisym. 6B423A4

G ,
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K6
~ i !5

1

3hi
F 7B6 28B6 B6

16B6 28B6

Sym. 7B6

G ,

in which I is a 232 identity matrix, andA1 , A4 , B4 , andB6

are given by

A15Fc11 0

0 c55
G , A45F 0 c131c55

c131c55 0 G ,
B45F 0 c55

c13 0 G , B65Fc55 0

0 c33
G ,

whereci j ( i j 51,3,5) are the stiffness matrix elements in~1!
for the i th layer, andhi and r i are its thickness and mas
density, respectively.

~2! The coefficientsm i j , n i ( i j 51,2) in Eqs. ~35a!,
~35b!, ~36a! and ~36b! are given by

@m#5
1

D11a
2v2 Fl1~ ik1a121!/k1

2 l1~ ik1a111!/k1
2

l2~ i k̂a121!/k̂2 l2~ i k̂a111!/k̂2 G ,

@n#5
1

D11a
2v2 @2l1a1

2/3 2l2a1
2/3#,

in which

l15
2

hd
, l25

c0
2a2h

2d
,

h5d1~1/c0
221/cs

2!v, d5F S 1

c0
22

1

cs
2D 2

1
4

c0
2a2G1/2

,

wherek̂52 ig for uvu<vc and k̂5k2 for uvu.vc .
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