19 research outputs found

    Phenylephrine postconditioning increases myocardial injury: Are alpha-1 sympathomimetic agonist cardioprotective?

    No full text
    Objective: We studied effects of phenylephrine (PHE) on postischemic functional recovery and myocardial injury in an ischemia-reperfusion (I-R) experimental model. Materials and Methods: Rat hearts were Langendorff-perfused and subjected to 30 min zero-flow ischemia (I) and 60 min reperfusion (R). During R PHE was added at doses of 1 μM (n = 10) and 50 μM (n = 12). Hearts (n = 14) subjected to 30 and 60 min of I-R served as controls. Contractile function was assessed by left ventricular developed pressure (LVDP) and the rate of increase and decrease of LVDP; apoptosis by fluorescent imaging targeting activated caspase-3, while myocardial injury by lactate dehydrogenase (LDH) released during R. Activation of kinases was measured at 5, 15, and 60 min of R using western blotting. Results: PHE did not improve postischemic contractile function. PHE increased LDH release (IU/g); 102 ± 10.4 (Mean ± standard error of mean) control versus 148 ± 14.8 PHE (1), and 145.3 ± 11 PHE (50) hearts, (P < 0.05). PHE markedly increased apoptosis. Molecular analysis showed no effect of PHE on the activation of proapoptotic c-Jun N-terminal kinase signaling; a differential pattern of p38 mitogen activated protein kinase (MAPK) activation was found depending on the PHE dose used. With 1 μM PHE, p-p38/total-p38 MAPK levels at R were markedly increased, indicating its detrimental effect. With PHE 50 μM, no further changes in p38 MAPK were seen. Activation of Akt kinase was decreased implying involvement of different mechanisms in this response. Conclusions: PHE administration during reperfusion does not improve postischemic recovery due to exacerbation of myocardial necrosis and apoptosis. This finding may be of clinical and therapeutic relevance

    Predictive functional control of an expansion valve for minimizing the superheat of an evaporator

    No full text
    International audienceIn a previous paper, a Predictive Functional Control (PFC) method was proposed to control the evaporator superheat with an electronic expansion valve. it has been shown that superheat may be more accurately controlled by PFC than the conventional Proportional-Integral-Derivative (PID) control. In this paper, the proposed methodology is extended to regulate the condensing pressure. In order to study the influence of this control method on the Coefficient of Performance (COP), experiments are conducted on a refrigerating machine by changing the cooling capacity from 120 to 30 kW. As PFC improves disturbance rejection compared to a PID control, it is possible to reduce the Superheat Setting Value and to prevent any unevaporated refrigerant liquid from reaching the compressor. As a consequence the use of PFC leads to an increase of COP which depends on operating conditions

    Fluoride curcumin derivatives: new mitochondrial uncoupling agents

    Get PDF
    The mitochondrial effects of two fluoride curcumin derivatives were studied. They induced the collapse of mitochondrial membrane potential (DeltaPsi), increased mitochondrial respiration, and decreased O(2)*- production and promoted Ca(2+) release. These effects were reversed by the recoupling agent 6-Ketocholestanol, but not by cyclosporin A, an inhibitor of the permeability transition pore (PTP), suggesting that these compounds act as uncoupling agents. This idea was reinforced by the analysis of the physico-chemical properties of the compounds indicating, that they are mainly in the anionic form in the mitochondrial membrane. Moreover, they are able to induce PTP opening by promoting the oxidation of thiol groups and the release of cytochrome c, making these two molecules potential candidates for induction of apoptosis

    Thyroid hormone improves postischaemic recovery of function while limiting apoptosis: A new therapeutic approach to support hemodynamics in the setting of ischaemia-reperfusion?

    No full text
    Although it has long been recognized that thyroid hormone is an effective positive inotrope, its efficacy in supporting hemodynamics in the acute setting of ischaemia and reperfusion (R) without worsening reperfusion injury remains largely unknown. Thus, we investigated the effects of triiodothyronine (T3) on reperfusion injury in a Langendorff-perfused rat heart model of 30 min zero-flow ischaemia and 60 min of (R) with or without T3 (40 μg/l) at R, T3-R60, n = 11 and CNT-R60, n = 10, respectively. Furthermore, phosphorylated levels of intracellular kinases were measured at 5, 15 and 60 min of R. T3 markedly improved postischaemic recovery of left ventricular developed pressure (LVDP%); 56.0% (SEM, 4.4) in T3-R60 versus 38.8% (3.1) in CNT-R60, P < 0.05. Furthermore, LDH release was significantly lower in T3-R60. Apoptosis detection by fluorescent probe optical imaging showed increased fluorescent signal in CNT-R60 hearts, while the signal was hardly detectable in T3-R60 hearts. Similarly, caspase-3 activity was found to be 78.2 (8.2) in CNT-R60 vs 40.5 (7.1) in T3-R60 hearts, P < 0.05. This response was associated with significantly lower levels of phospho-p38 MAPK at any time point of R. No significant changes in phospho- ERK1/2 and JNK levels were observed between groups. Phospho-Akt levels were significantly lower in T3 treated group at 5 min and no change in phospho-Akt levels were observed at 15 and 60 min between groups. In conclusion, T3 administration at reperfusion can improve postischaemic recovery of function while limiting apoptosis. This may constitute a paradigm of a positive inotropic agent with anti-apoptotic action suitable for supporting hemodynamics in the clinical setting of ischaemia-reperfusion. © Springer 2008

    Effects of curcumin on ion channels and pumps: A review

    Get PDF
    Curcumin, an orange‐yellow lipophilic polyphenolic molecule, is the active component of Curcuma longa, which is extensively used as a spice in most of the Asian countries. This natural compound is able to interact with a large number of molecular structures like proteins, enzymes, lipids, DNA, RNA, transporter molecules, and ion channels. It has been reported to possess several biological effects such as antioxidant, anti‐inflammatory, wound healing, antimicrobial, anticancer, antiangiogenic, antimutagenic, and antiplatelet aggregation properties. These beneficial effects of curcumin are because of its extraordinary chemical interactions such as extensive hydrogen and covalent bonding, metal chelation, and so on. Therefore, the aim of this review was to outline the evidence in which curcumin could affect different types of ion channels and ion channel‐related diseases, and also to elucidate basic molecular mechanisms behind it
    corecore