222 research outputs found
Development of Onchocerca volvulus in humanized NSG mice and detection of parasite biomarkers in urine and serum.
BACKGROUND: The study of Onchocerca volvulus has been limited by its host range, with only humans and non-human primates shown to be susceptible to the full life cycle infection. Small animal models that support the development of adult parasites have not been identified.
METHODOLOGY/PRINCIPAL FINDINGS: We hypothesized that highly immunodeficient NSG mice would support the survival and maturation of O. volvulus and alteration of the host microenvironment through the addition of various human cells and tissues would further enhance the level of parasite maturation. NSG mice were humanized with: (1) umbilical cord derived CD34+ stem cells, (2) fetal derived liver, thymus and CD34+ stem cells or (3) primary human skeletal muscle cells. NSG and humanized NSG mice were infected with 100 O. volvulus infective larvae (L3) for 4 to 12 weeks. When necropsies of infected animals were performed, it was observed that parasites survived and developed throughout the infection time course. In each of the different humanized mouse models, worms matured from L3 to advanced fourth stage larvae, with both male and female organ development. In addition, worms increased in length by up to 4-fold. Serum and urine, collected from humanized mice for identification of potential biomarkers of infection, allowed for the identification of 10 O. volvulus-derived proteins found specifically in either the urine or the serum of the humanized O. volvulus-infected NSG mice.
CONCLUSIONS/SIGNIFICANCE: The newly identified mouse models for onchocerciasis will enable the development of O. volvulus specific biomarkers, screening for new therapeutic approaches and potentially studying the human immune response to infection with O. volvulus
Macrophages and neutrophils from humans and mice kill larval Strongyloides stercoralis during innate immunity
The parasitic nematode Strongyloides stercoralis (Ss) infects 30-100 million people worldwide, yet little is known about the immune response in humans. Previous studies on innate immunity to Ss in mice have demonstrated a role for eosinophils, neutrophils (PMN) and complement activation in the protective immune response
Detailed petrophysical and geophysical characterization of core samples from the potential caprock-reservoir system in the Sulcis Coal Basin (Southwestern Sardinia - Italy)
In this work we present a methodology suitable to identify a caprock-reservoir system for the CO2 storage in the Sulcis Coal Basin (SW Sardinia - Italy). The petrophysical and geophysical characterizations indicate that the potential carbonate reservoir ("Miliolitico" Fm. Auct.) located at the base of the Eocene stratigraphic sequence in the mining district of the Sulcis Coal Basin, southwestern Sardinia, is heterogeneous but presents suitable reservoir zones for the storage of the CO2. The GPS data analysis indicates that the study area is stable, since it is characterized by a surface crustal deformation smaller than 1 mm/y
Assessing thornback ray growth pattern in different areas of Western-Central Mediterranean Sea through a Multi-Model Inference analysis
The lack of information on age validation often affects ageing studies in cartilaginous fish, even in the most common species. Recently, the annual growth band deposition pattern has been directly validated for thornback ray in the Mediterranean Basin, thus providing a highly reliable protocol for age reading. In this regard, taking advantage of this new information, the present study aims to investigate this species growth for the first time over a wide area of the Western and Central Mediterranean Sea, involving four different FAO geographic sub-areas. In order to provide an accurate description of the species growth, different models were fitted to the age-length data obtained from the observation of vertebral centra thin sections. A total of 720 specimens were analysed (358 females and 362 males) with total length ranging between 11.5 and 86.4 cm. The corrected Akaike's Information criterion (AICc) indicated, among the tested models, the three-parameter von Bertalanffy function as the most robust in describing the species growth. Growth modelling outcomes revealed the thornback rays as capable of growing relatively fast during the first years; the growth rate gradually slows down allowing maximum sizes of about 90â100 cm in total length to be reached. Significant discrepancies in the growth pattern were found between sexes in all investigated areas with the only exception being in the Northern Tyrrhenian Sea. Differences in growth patterns were observed between areas, specifically in the estimated growth rate of the species for each sub-region. The present study, confirmed the importance of the availability of a validated ageing protocol and testing multiple growth models. Moreover, our results highlighted the urgent need to investigate a species growth in a wide geographic area, searching also for possible differences at sub-region level. Providing this information could indeed allow eventual management plans to be adapted to the exact growth pattern that the species exhibit in the region, in this way increasing their effectiveness
Assessing fishâfishery dynamics from a spatially explicit metapopulation perspective reveals winners and losers in fisheries management
Sustainable management of living resources must reconcile biodiversity conservation and socioeconomic viability of human activities. In the case of fisheries, sustainable management design is made challenging by the complex spatiotemporal interactions between fish and fisheries. We develop a comprehensive metapopulation framework integrating data on species life-history traits, connectivity and habitat distribution to identify priority areas for fishing regulation and assess how management impacts are spatially distributed. We trial this approach on European hake fisheries in the north-western Mediterranean, where we assess area-based management scenarios in terms of stock status and fishery productivity to prioritize areas for protection. Model simulations show that local fishery closures have the potential to enhance both spawning stock biomass and landings on a regional scale compared to a status quo scenario, but that improving protection is easier than increasing productivity. Moreover, the interaction between metapopulation dynamics and the redistribution of fishing effort following local closures implies that benefits and drawbacks are heterogeneously distributed in space, the former being concentrated in the proximity of the protected site. A network analysis shows that priority areas for protection are those with the highest connectivity (as expressed by network metrics) if the objective is to improve the spawning stock, while no significant relationship emerges between connectivity and potential for increased landings. Synthesis and applications. Our framework provides a tool for (1) assessing area-based management measures aimed at improving fisheries outcomes in terms of both conservation and socioeconomic viability and (2) describing the spatial distribution of costs and benefits, which can help guide effective management and gain stakeholder support. Adult dispersal remains the main source of uncertainty that needs to be investigated to effectively apply our model to fisheries regulation
Anisakid and Raphidascaridid parasites in Trachurus trachurus: infection drivers and possible effects on the hostâs condition
This study investigated the distribution of nematode larvae of Anisakidae and Raphidascarididae (genera Anisakis and Hysterothylacium) in Trachurus trachurus (Linnaeus, 1758) in the Ligurian and central-northern Tyrrhenian Seas. The relationship between the number of parasites and the length and weight parameters of the fish was assessed, and the possible effect of the parasites on the condition factor was evaluated. A total of 190 T. trachurus specimens were collected in July 2019. Parasites were found in 70 individuals. A total of 161 visible larvae were collected in the viscera. Morphological analysis revealed the presence of Anisakis spp. in 55 fish and Hysterothylacium spp. in 15 fish, while 5 fish showed coinfection with both genera. The specimens subjected to PCR (n = 67) showed that 85% of the Anisakis larvae analyzed belonged to the species A. pegreffii, while the remaining 15% belonged to hybrids of A. pegreffii-A. simplex (s.s.). A total of 58% (n = 7) of the Hysterothylacium larvae analyzed belonged to the species H. fabri, while 42% belonged to the species H. aduncum. Our results support the hypothesis that infection with these parasites does not affect the condition of the fish host analyzed, and that body size and depth are major drivers in determining infection levels with Anisakid and Raphidascaridid nematodes
Identifying Persistent Hot Spot Areas of Undersized Fish and Crustaceans in Southern European Waters: Implication for Fishery Management Under the Discard Ban Regulation
The recent establishment of the âlanding obligationâ under the reformed EU Common Fishery Policy has the twofold objective of reducing the excessive practice of discarding unwanted catch at sea and encouraging more selective and sustainable fisheries. Within this context, the awareness of the spatial distribution of potential unwanted catches is important for devising management measures aimed to decrease discards. This study analyzed the distribution of Hot Spot density areas of demersal fish and crustaceans below the Minimum Conservation Reference Size (MCRS) in four different southern European seas: continental Portuguese coast, Catalan Sea, South of Sicily, Liguria and northern Tyrrhenian Seas using both bottom trawl survey data and information on the spatial distribution of commercial fisheries. Critical areas for discarding were identified as zones where the highest densities of individuals below MCRS were consistently recorded throughout a series of years. Results clearly showed a patchy distribution of undersized individuals in each investigated area, highlighting the overlap between high density patches of both discards and fishing effort. The present findings provide a relevant knowledge for supporting the application of spatial-based management actions, such as the designation of Fisheries Restricted Areas (FRAs), in order to minimize the by-catch of undersized specimens and improve the sustainability of demersal fisheries
Western Irish Sea Nephrops Grounds (FU15) 2013 UWTV Survey Report and catch options for 2014
Use the URI link below to search the Marine Institute Data Discovery Catalogue for datasets relevant to this report.This report provides the main results and findings of the eleventh annual underwater television survey on the âIrish sea west Nephrops groundsâ ICES assessment area, Functional Unit 15. The survey was multi-disciplinary in nature collecting UWTV and other ecosystem data. The 2013 design consisted of a randomised isometric grid of 80 stations at 5 nautical mile intervals out over the full known extent the stock. The resulting krigged burrow abundance estimate was 4.3 billion burrows. This was a 16% decrease relative to 2012. The spatial distribution shows higher abundance in the south of the area and a larger decline in abundance is apparent in the North. Overall densities remain high and abundance remains relatively stable, well above MSY Btrigger. Reducing the number of stations in 2013 is not expected to have significantly affected the accuracy of the survey estimate. The CV (or relative standard error) of 3% is in line with previous estimates and well below the upper limit of 20% recommended by SGNEPS 2012. Total catches and landings options at various different fishing mortalities were calculated and fishing at Fmsy in 2014 implies a total catch option at Fmsy (=Fmax) of 9,914 tonnes which results in landings of no more than 8,244 tonnes. The only sea-pen species observed in 2013 was Virgularia mirabilis and the frequency of occurrence was lower than in 2012. Trawl marks were noted at 43% of the UWTV stations
- âŠ