235 research outputs found

    Does non-stationarity of extreme precipitation exist in the Poyang Lake Basin of China?

    Get PDF
    Study region Poyang Lake Basin, China. Study focus This study aimed to investigate whether there are non-stationary characteristics of extreme precipitation in the Poyang Lake Basin (PLB) of China, and the trends of non-stationary characteristics from 1959 to 2019. The spatio-temporal variations of extreme precipitation were analysed from three fundamental aspects: duration, frequency, and intensity, based on the prewhitening Mann-Kendall (PWMK) test. Non-stationary variations and the risk of extreme precipitation were investigated based on the generalized additive models for location, scale, and shape (GAMLSS). New hydrological insights for the region (1) the intensity and frequency of extreme precipitation increased significantly, whereas there was a significant decrease in extreme precipitation duration in the PLB. (2) The duration of extreme precipitation showed significant non-stationary characteristics in the western PLB. At the Nanchang site, 83.3 % of the extreme precipitation intensity indices showed non-stationary characteristics. The RX1day (maximum 1-day precipitation amount) and RX5day (maximum 5-day precipitation amount) increased significantly for different return periods under non-stationary conditions in the northwestern PLB. (3) The risk of extreme precipitation can be captured using the GAMLSS. The stationary method underestimated the extreme precipitation intensity (e.g., RX1day) compared to the GAMLSS for longer return periods in the PLB. More attention should be paid to the increase and fluctuation of the return period of extreme precipitation caused by the mean non-stationarity and variance non-stationarity

    Nonlocal atlas-guided multi-channel forest learning for human brain labeling: Nonlocal atlas-guided multi-channel forest learning

    Get PDF
    It is important for many quantitative brain studies to label meaningful anatomical regions in MR brain images. However, due to high complexity of brain structures and ambiguous boundaries between different anatomical regions, the anatomical labeling of MR brain images is still quite a challenging task. In many existing label fusion methods, appearance information is widely used. However, since local anatomy in the human brain is often complex, the appearance information alone is limited in characterizing each image point, especially for identifying the same anatomical structure across different subjects. Recent progress in computer vision suggests that the context features can be very useful in identifying an object from a complex scene. In light of this, the authors propose a novel learning-based label fusion method by using both low-level appearance features (computed from the target image) and high-level context features (computed from warped atlases or tentative labeling maps of the target image)

    Data Mining in Networks of Differentially Expressed Genes during Sow Pregnancy

    Get PDF
    Small to moderate gains in Pig fertility can mean large returns in overall efficiency, and developing methods to improve it is highly desirable. High fertility rates depend on completion of successful pregnancies. To understand the molecular signals associated with pregnancy in sows, expression profiling experiments were conducted to identify differentially expressed genes in ovary and myometrium at different pregnancy periods using the Affymetrix Porcine GeneChipTM. A total of 974, 1800, 335 and 710 differentially expressed transcripts were identified in the myometrium during early pregnancy (EP) and late pregnancy (LP), and in the ovary during EP and LP, respectively. Self-Organizing Map (SOM) clusters indicated the differentially expressed genes belonged to 7 different functional groups. Based on BLASTX searches and Gene Ontology (GO) classifications, 129 unique genes closely related to pregnancy showed differential expression patterns. GO analysis also indicated that there were 21 different molecular function categories, 20 different biological process categories, and 8 different cellular component categories of genes differentially expressed during sow pregnancy. Gene regulatory network reconstruction provided us with an interaction model of known genes such as insulin-like growth factor 2 (IGF2) gene, estrogen receptor (ESR) gene, retinol-binding protein-4 (RBP4) gene, and several unknown candidate genes related to reproduction. Several pitch point genes were selected for association study with reproduction traits. For instance, DPPA5 g.363 T>C was found to associate with litter born weight at later parities in Beijing Black pigs significantly (p < 0.05). Overall, this study contributes to elucidating the mechanism underlying pregnancy processes, which maybe provide valuable information for pig reproduction improvement

    Interferon-γ-Induced Intestinal Epithelial Barrier Dysfunction by NF-κB/HIF-1α Pathway

    Full text link
    Interferon-? (IFN-?) plays an important role in intestinal barrier dysfunction. However, the mechanisms are not fully understood. As hypoxia-inducible factor-1 (HIF-1) is a critical determinant response to hypoxia and inflammation, which has been shown to be deleterious to intestinal barrier function, we hypothesized that IFN-? induces loss of barrier function through the regulation of HIF-1α activation and function. In this study, we detected the expressions of HIF-1α and tight junction proteins in IFN-?-treated T84 intestinal epithelial cell line. IFN-? led to an increase of HIF-1α expression in time- and dose-dependent manners but did not change the expression of HIF-1?. The IFN-?-induced increase in HIF-1α was associated with an activation of NF-?B. Treatment with the NF-?B inhibitor, pyrolidinedithiocarbamate (PDTC), significantly suppressed the activation of NF-?B and the expression of HIF-1α. In addition, IFN-? also increased intestinal epithelial permeability and depletion of tight junction proteins; inhibition of NF-?B or HIF-1α prevented the increase in intestinal permeability and alteration in tight junction protein expressions. Interestingly, we demonstrated that a significant portion of IFN-? activation NF-kB and modulation tight junction expression is mediated through HIF-1α. Taken together, this study suggested that IFN-? induced the loss of epithelial barrier function and disruption of tight junction proteins, by upregulation of HIF-1α expression through NF-?B pathway.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140108/1/jir.2013.0044.pd

    Genome-wide Association Study of Porcine Hematological Parameters in a Large White × Minzhu F2 Resource Population

    Get PDF
    Hematological traits, which are important indicators of immune function in animals, have been commonly examined as biomarkers of disease and disease severity in humans and animals. Genome-wide significant quantitative trait loci (QTLs) provide important information for use in breeding programs of animals such as pigs. QTLs for hematological parameters (hematological traits) have been detected in pig chromosomes, although these are often mapped by linkage analysis to large intervals making identification of the underlying mutation problematic. Single nucleotide polymorphisms (SNPs) are the common form of genetic variation among individuals and are thought to account for the majority of inherited traits. In this study, a genome-wide association study (GWAS) was performed to detect regions of association with hematological traits in a three-generation resource population produced by intercrossing Large White boars and Minzhu sows during the period from 2007 to 2011. Illumina PorcineSNP60 BeadChip technology was used to genotype each animal and seven hematological parameters were measured (hematocrit (HCT), hemoglobin (HGB), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV), red blood cell count (RBC) and red blood cell volume distribution width (RDW)). Data were analyzed in a three step Genome-wide Rapid Association using the Mixed Model and Regression-Genomic Control (GRAMMAR-GC) method. A total of 62 genome-wide significant and three chromosome-wide significant SNPs associated with hematological parameters were detected in this GWAS. Seven and five SNPs were associated with HCT and HGB, respectively. These SNPs were all located within the region of 34.6-36.5 Mb on SSC7. Four SNPs within the region of 43.7-47.0 Mb and fifty-five SNPs within the region of 42.2-73.8 Mb on SSC8 showed significant association with MCH and MCV, respectively. At chromosome-wide significant level, one SNP at 29.2 Mb on SSC1 and two SNPs within the region of 26.0-26.2 Mb were found to be significantly associated with RBC and RDW, respectively. Many of the SNPs were located within previously reported QTL regions and appeared to narrow down the regions compared with previously described QTL intervals. In current research, a total of seven significant SNPs were found within six candidate genes SCUBE3, KDR, TDO, IGFBP7, ADAMTS3 and AFP. In addition, the KIT gene, which has been previously reported to relate to hematological parameters, was located within the region significantly associated with MCH and MCV and could be a candidate gene. These results of this study may lead to a better understanding of the molecular mechanisms of hematological parameters in pigs

    Reactive Oxygen Species and Targeted Therapy for Pancreatic Cancer

    Get PDF
    Pancreatic cancer is the fourth leading cause of cancer-related death in the United States. Reactive oxygen species (ROS) are generally increased in pancreatic cancer cells compared with normal cells. ROS plays a vital role in various cellular biological activities including proliferation, growth, apoptosis, and invasion. Besides, ROS participates in tumor microenvironment orchestration. The role of ROS is a doubled-edged sword in pancreatic cancer. The dual roles of ROS depend on the concentration. ROS facilitates carcinogenesis and cancer progression with mild-to-moderate elevated levels, while excessive ROS damages cancer cells dramatically and leads to cell death. Based on the recent knowledge, either promoting ROS generation to increase the concentration of ROS with extremely high levels or enhancing ROS scavenging ability to decrease ROS levels may benefit the treatment of pancreatic cancer. However, when faced with oxidative stress, the antioxidant programs of cancer cells have been activated to help cancer cells to survive in the adverse condition. Furthermore, ROS signaling and antioxidant programs play the vital roles in the progression of pancreatic cancer and in the response to cancer treatment. Eventually, it may be the novel target for various strategies and drugs to modulate ROS levels in pancreatic cancer therapy

    Reactive Oxygen Species and Targeted Therapy for Pancreatic Cancer

    Get PDF
    Pancreatic cancer is the fourth leading cause of cancer-related death in the United States. Reactive oxygen species (ROS) are generally increased in pancreatic cancer cells compared with normal cells. ROS plays a vital role in various cellular biological activities including proliferation, growth, apoptosis, and invasion. Besides, ROS participates in tumor microenvironment orchestration. The role of ROS is a doubled-edged sword in pancreatic cancer. The dual roles of ROS depend on the concentration. ROS facilitates carcinogenesis and cancer progression with mild-to-moderate elevated levels, while excessive ROS damages cancer cells dramatically and leads to cell death. Based on the recent knowledge, either promoting ROS generation to increase the concentration of ROS with extremely high levels or enhancing ROS scavenging ability to decrease ROS levels may benefit the treatment of pancreatic cancer. However, when faced with oxidative stress, the antioxidant programs of cancer cells have been activated to help cancer cells to survive in the adverse condition. Furthermore, ROS signaling and antioxidant programs play the vital roles in the progression of pancreatic cancer and in the response to cancer treatment. Eventually, it may be the novel target for various strategies and drugs to modulate ROS levels in pancreatic cancer therapy

    Kaiso (ZBTB33) Downregulation by Mirna-181a Inhibits Cell Proliferation, Invasion, and the Epithelial–Mesenchymal Transition in Glioma Cells

    Get PDF
    Background/Aims: Kaiso (ZBTB33) expression is closely associated with the progression of many cancers and microRNA (miRNA) processing. MiR-181a plays critical roles in multiple cancers; however, its precise mechanisms in glioma have not been well clarified. The goal of this study was to evaluate the interaction between Kaiso and miR-181a in glioma. Methods: Quantitative real-time PCR (qRT-PCR) was performed to detect the levels of Kaiso and miR-181a in glioma tissues and cell lines. Cell proliferation, invasion, and the epithelial–mesenchymal transition (EMT) were evaluated to analyze the biological functions of miR-181a and Kaiso in glioma cells. The mRNA and protein levels of Kaiso were measured by qRT-PCR and western blotting, respectively. Meanwhile, luciferase assays were performed to validate Kaiso as a miR-181a target in glioma cells. Results: We found that the level of miR-181a was the lowest among miR-181a–d in glioma tissues and cell lines, and the low level of miR-181a was closely associated with the increased expression of Kaiso in glioma tissues. Moreover, transfection of miR-181a significantly inhibited the proliferation, invasion, and EMT of glioma cells, whereas knockdown of miR-181a had the opposite effect. Bioinformatics analysis predicted that Kaiso was a potential target gene of miR-181a, and the luciferase reporter assay demonstrated that miR-181a could directly target Kaiso. In addition, Kaiso silencing had similar effects as miR-181a overexpression in glioma cells, whereas overexpression of Kaiso in glioma cells partially reversed the inhibitory effects of the miR-181a mimic. Conclusionss: miR-181a inhibited the proliferation, invasion, and EMT of glioma cells by directly targeting and downregulating Kaiso expression
    corecore