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Purpose: It is important for many quantitative brain studies to label meaningful anatomical regions
in MR brain images. However, due to high complexity of brain structures and ambiguous boundaries
between different anatomical regions, the anatomical labeling of MR brain images is still quite a
challenging task. In many existing label fusion methods, appearance information is widely used.
However, since local anatomy in the human brain is often complex, the appearance information alone
is limited in characterizing each image point, especially for identifying the same anatomical structure
across different subjects. Recent progress in computer vision suggests that the context features can
be very useful in identifying an object from a complex scene. In light of this, the authors propose
a novel learning-based label fusion method by using both low-level appearance features (computed
from the target image) and high-level context features (computed from warped atlases or tentative
labeling maps of the target image).
Methods: In particular, the authors employ a multi-channel random forest to learn the nonlinear
relationship between these hybrid features and target labels (i.e., corresponding to certain anatomical
structures). Specifically, at each of the iterations, the random forest will output tentative labeling
maps of the target image, from which the authors compute spatial label context features and then use
in combination with original appearance features of the target image to refine the labeling. Moreover,
to accommodate the high inter-subject variations, the authors further extend their learning-based label
fusion to a multi-atlas scenario, i.e., they train a random forest for each atlas and then obtain the final
labeling result according to the consensus of results from all atlases.
Results: The authors have comprehensively evaluated their method on both public LONI_LBPA40
and IXI datasets. To quantitatively evaluate the labeling accuracy, the authors use the dice similarity
coefficient to measure the overlap degree. Their method achieves average overlaps of 82.56% on 54
regions of interest (ROIs) and 79.78% on 80 ROIs, respectively, which significantly outperform the
baseline method (random forests), with the average overlaps of 72.48% on 54 ROIs and 72.09% on
80 ROIs, respectively.
Conclusions: The proposed methods have achieved the highest labeling accuracy, compared to
several state-of-the-art methods in the literature. C 2016 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4940399]

Key words: MR brain image labeling, multi-channel, nonlinear learning, context model, random
forests

1. INTRODUCTION

Many quantitative brain image analyses often rely on the
reliable labeling of brain images.1–5 Thus, automatic labeling
of brain MR images becomes a notable topic in the field of
medical image analysis. Due to the burden of manual brain

labeling, it is imperative to develop an automatic and reliable
brain labeling method. However, due to high complexities
in brain structures, the overlap in intensity distributions
between different brain structures, blurred boundaries, and
large anatomical variations across individual brains, it still
remains a challenging task for automatic brain labeling.
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Among all the existing brain labeling techniques,
multi-atlas based labeling methods have achieved great
success recently. In these methods, a set of already-labeled
brain MR images, namely, atlases, is used to guide the labeling
of new target images.6–9 Specifically, given a target image to
be labeled, multiple atlas images will be first warped onto the
target image, and then the estimated warping functions will
be applied to transforming their corresponding label maps to
the target image. Finally, all warped atlas label maps will be
fused for labeling the target image. The performance of multi-
atlas based labeling methods depend on both the accuracy of
registration and the effectiveness of the label fusion step. Since
image registration is also a challenging problem in the medical
image analysis area,10,11 more researchers are focusing on
improving the labeling performance by proposing more
effective label fusion techniques.12,13 For example, Coupé
et al.12 proposed a nonlocal patch-based label fusion technique
by using patch-based similarity as weight to propagate the
neighboring labels from aligned atlases to the target image,
for potentially overcoming errors from registration. Instead
of pair-wisely estimating the patch-based similarity for label
fusion, Wu et al.13 proposed to use sparse representation to
jointly estimate all patch-based similarities between a to-be-
labeled target voxel and its neighboring voxels in all atlases.
However, the traditional multi-atlas based labeling techniques
suffer from two limitations: (1) the definition of patch-based
similarity is often handcrafted based on predefined features
(e.g., image intensity), which may not be effective for labeling
all types of brain structures; (2) only a linear prediction
model is often used for propagating labels of aligned atlases
onto the target image, thus potentially limiting the labeling
accuracy.

On the other hand, learning-based labeling methods have
also attracted significant attention recently. In the learning-
based methods, a strong classifier, such as support vector
machine (SVM),14 Adaboost,15 random forests,16 and artificial
neural networks,17 is typically trained for each label/region of
interest (ROI) in the brain image, based on the local appearance
features. In the testing stage, the learned classifiers are applied
to voxel-wisely classifying the target image. The label of
each voxel is then determined as the class with the largest
classification response on that voxel. These learning-based
labeling methods can fully use the appearance information of
a target image for labeling, through extraction of abundant
texture information from a local image patch. In the testing
stage, the learned classifiers are applied to voxel-wisely
classifying the target image. The label of each voxel is then
determined as the class with the largest classification response
on that voxel. These learning-based labeling methods can fully
use the appearance information of a target image for labeling,
through extraction of abundant texture information from a
local image patch. For example, Zikic et al.18 proposed atlas
forest, which encodes an atlas by learning a classification
forest on it. The final labeling of a target image is achieved by
averaging the labeling results from all selected atlas forests.
Tu and Bai19 adopted the probabilistic boosting tree (PBT)
with Haar features and texture features for labeling MR
brain images. To further boost labeling performance, an auto-

context model (ACM) was also proposed to iteratively refine
the labeling results. Compared to the global learning of a
classifier for labeling the entire ROI, Hao et al.20 proposed
a local label learning method for labeling each target voxel
with the online learning classifier, which is trained with
k nearest neighbor (k-NN) training samples of the target
voxel from the aligned atlases. However, the online learning
manner is often time-consuming, which limits the utilization
of sophisticated classification algorithms, and subsequently
affects the segmentation accuracy of complex brain structure.

Overall, the major concern with the learning-based labeling
methods is that the spatial information of labels encoded in the
atlases is not fully utilized. Moreover, in contrast to the multi-
atlas based labeling methods described above, the learning-
based labeling methods often determine a target voxel’s label
based solely on the local image appearance, without receiving
clear assistance from the aligned atlases. Accordingly, their
labeling accuracy can be limited, since patches with similar
local appearance could appear in different parts of the brain.
Although Zikic et al.18 utilized the population mean atlas for
learning atlas forests, due to large intersubject variations, the
structural details in the constructed population-mean atlas are
lost, thus hindering the accurate labeling of brain structures.
Besides, in comparison to other learning-based methods, atlas
forest is prone to overfitting, as it learns a strong classifier
from only a single brain image, not from a set of brain images
as typically done in other approaches.19,20 Specifically, if the
target image is anatomically different from several atlases in
the library, the classification forests trained on those atlases
will degrade the final labeling result of the target image.

In this paper, we propose a novel atlas-guided multi-
channel forest learning method for labeling multiple ROIs.
Here, multi-channel refers to multiple representations of a
target image, which include features extracted from not only
the target (intensity) image but also the label maps of all
aligned atlases. Specifically, instead of labeling each target
voxel with only its local image appearance from the target
image, we also utilize label information from the aligned atlas.

• In the training stage, we first train an atlas-specific clas-
sification forest for each atlas, along with the (training)
target image. Note that the atlas-specific classifier is
trained based on the local image appearance of this voxel
in the (training) target image as well as the label informa-
tion of the aligned atlas, which effectively avoids missing
any spatial label information of the target voxel, as in
the existing learning-based labeling methods. Different
from previous multi-atlas based methods,12,13 which
handcraft a similarity metric between voxels in the target
image and atlas image for label propagation, our method
uses a nonlinear classification forest to automatically
fuse information from both the target and atlas images
for brain labeling. This could effectively overcome the
aforementioned two limitations of previous multi-atlas
based methods, i.e., using only the handcrafted similarity
metric and the linear model. To further refine the labeling
result of each atlas-specific forest, Haar-based multi-
class contexture model (HMCCM) is also proposed to
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iteratively construct a sequence of classification forests
by updating local label context features from the newly
estimated label maps for training.

• In the testing stage, each atlas-specific classification
forest is independently applied to estimate class prob-
ability for each voxel in the (test) target image. The
final labeling result is the average of all labeling results
from all atlas-specific forests. Specifically, given an
aligned atlas, which includes its associated atlas-specific
classification forest and a target voxel in the (test) target
image, we first find k-NN voxels of the target voxel in
the aligned atlas. Then, for each of the k-NN voxels,
its label features are extracted from the aligned atlas,
and further combined with the local image appearance
of the target voxel, as input to the learned forest for
classification. Finally, the labeling results from all k-
NN voxels are averaged to obtain the labeling result of
the target voxel using this atlas-specific forest. Once the
tentative labeling result of the target image is obtained
by averaging all atlas-specific forests, the label features
originally computed from each aligned atlas will be now
replaced by those computed from the tentative labeling
result/map for iterative classification refinement with the
proposed HMCCM. Validated on both LONI_LBPA40
and IXI datasets, our proposed method consistently
outperforms both traditional multi-atlas based methods
and learning-based methods.

Finally, we want to mention that the preliminary version of
this work appeared in Ref. 21. Compared with the previous
work, we present two novelties in the method as described
below. Moreover, we extensively evaluate the sensitivity of our
method with respect to different parameters and also validate
our method in an additional IXI dataset.

• In the previous work, we extracted features from the
corresponding voxels in the atlases, without considering
potential registration errors. In this paper, we propose a
nonlocal strategy to relieve labeling mistakes brought by
registration errors.

• We further present a HMCCM to replace original label
features from the aligned atlases, which can produce
more accurate label information through an iterative
scheme.

The rest of the paper is organized as follows. Section 2
describes the proposed labeling method and its application
to single-ROI and multi-ROI labeling. Experiments are
performed and analyzed in Sec. 3. Finally, discussion and
conclusion are given in Sec. 4.

2. METHOD

In this section, we will first present notations used in our pa-
per. Then, we will explain the learning procedure of our atlas-
guided multi-channel forest, followed by the application of
learned forests to single-ROI and multi-ROI labeling. Finally,
we present HMCCM to iteratively refine the labeling results.

2.A. Notations

An atlas library A consists of multiple atlases {Ai

= (Ii,Li)|i = 1,. . .,N}, where Ii and Li are the intensity image
and the label image/map of the ith atlas, and N is the total
number of atlases in the library A. Set T = {Tj = (H j,Bj)| j
= 1,. . .,M} represents the training set, where H j and Bj are the
intensity image and the label image/map of the jth training
sample, and M is the total number of training samples.
Aj
i = {I ji ,L

j
i },i = 1,. . .,N, j = 1,. . .,M denotes the intensity (I ji )

and label (L j
i ) images of the ith atlas after mapping to the jth

training image. Each brain ROI is assigned with a ROI/label
s, s = 1,. . .,S, where S is the total number of ROIs. Ps denotes
the label probability map of ROI s. Here, we use x to denote
the coordinate of a voxel and ck(x) to denote the coordinate of
the kth nearest voxel of the voxel x.

2.B. Atlas-guided multi-channel forest learning

To increase the flexibility of our learning procedure, we will
train one multi-channel random forest Fi,s (i.e., multi-channel
forest) for each atlas i and each ROI s. In this way, when a
new atlas is added into the atlas library A, only the new multi-
channel forest needs to be trained with the new atlas, while all
previously trained forests can be reused. To label a single ROI,
N multi-channel forests (corresponding to N atlases) will be
learned, with each trained forest corresponding to a specific
atlas. Section 2.C will show how the multi-channel forests
of different ROIs can be combined effectively for multi-ROI
labeling. In this section, we focus on the learning part of our
method.

To label one ROI, i.e., the sth ROI, during the training
stage, we will learn a multi-channel forest Fi,s for each
atlas, i.e., the ith atlas. Due to anatomical variability between
individual brains, there is often inconsistency between the
label information provided by atlas and the actual label in
the target image. To obtain more accurate label information
from the atlas for labeling, registration and patch selection
are performed as follows. First, during the learning of the
ith atlas-specific forest, we nonrigidly register the ith atlas
image Ii onto each training target image H j, and then also
obtain the warped atlas label map L j

i by applying the same
estimated transformation on the atlas label map Li. In this
way, M training image pairs {H j,I

j
i ,L

j
i ,Bj}, j = 1,. . .,M are

formed, where H j, I ji , and L j
i are used for extracting features

while the label map Bj is used to provide the class label for
forest learning. Afterward, the positive and negative samples
are taken inside and outside of the sth ROI from every training
image pair for multi-channel forest learning, as detailed below.

• For each sample voxel x in the training image H j,
we first extract its appearance features from a local
patch of the training image H j, centered at x. To
reduce the registration error and further acquire more
accurate label from the atlas, according to the similarity
between local intensity patches of training image and
warped atlas image, we search a nearest voxel c1(x) of x
from the warped atlas image I ji . Then, we extract label
features from the local patch of c1(x) in the aligned atlas
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F. 1. The flowchart of our method for learning one multi-channel forest with the ith atlas. An example for sample selection during the training stage is also
given in the right-bottom corner, where blue points denote samples belonging to the ROI while green points denote samples belonging to the background. Note
here that more samples are drawn around the ROI boundaries.

label image L j
i . Finally, both appearance features and

label features are combined to jointly characterize the
appearance and spatial label context information of each
sample voxel and are used for inferring label.

• After training, N multi-channel forests (corresponding
to N atlases) will be learned for each ROI. Thus, in
total, S× N multi-channel forests will be obtained for
all S ROIs under labeling. The flowchart shown in
Fig. 1 gives an illustration for learning one multi-channel
forest.

Sampling strategy: The positive and negative samples used
to train multi-channel forest for the sth ROI are randomly
sampled inside and outside the sth ROI, respectively. To
effectively classify voxels near the ROI boundary and also to
avoid data imbalance between positive and negative samples,
we select positive and negative samples near the boundary
of the target ROI, as shown in the right bottom of Fig. 1.
Intuitively, voxels around the ROI boundary are more difficult
to be correctly classified than other voxels. Therefore, more
samples should be drawn around the ROI boundary during
the sampling stage. In our implementation, voxels that lie in
the areas within 2 voxels from the ROI boundary account for
80% of total training samples. The numbers of positive and
negative samples are kept the same.

Feature extraction: To train multi-channel forests for the
ith atlas, as mentioned above, every training image H j will be
associated with its respective aligned ith atlas Aj

i = {I ji ,L
j
i } (on

the jth training image space). Note that the features of each
sampled voxel, used to train our multi-channel forest Fi,s,
come from both the training image and the aligned ith atlas
label map. More specifically, there are S+1 different channels
of features extracted for each sampled voxel: 1 channel of
local appearance features of this voxel extracted from the
training image (e.g., H j), and S channels of local label context

features of the corresponding voxel extracted from the aligned
ith atlas label map (e.g., L j

i ) with respect to each of S ROI.
Local appearance features: The local image appearance

features extracted from a given (training) target image include
(1) patch intensities within a 11 × 11 × 11 neighborhood,
(2) outputs from the first-order difference filters (FODs),
second-order difference filters (SODs), 3D Hyperplane filters,
3D Sobel filters, Laplacian filters and range difference filters,
and (3) the random 3D Haar-like features computed from a
11×11×11 neighborhood. In addition, by randomly selecting
different parameter values for the used filters (e.g., direction
in FODs) and size and position of each Haar cube in the
3D Haar-like feature, the above appearance features can
capture rich textural information embedded in the target
image. The detailed descriptions of local appearance features
are presented in the Appendix.

Local label context features: Motivated by the traditional
multi-atlas based labeling methods, the label map of the
aligned atlas can provide valuable label context information
for estimating correct labels for the target image. Thus, we also
extract context features from the label map of the aligned atlas
(e.g., L j

i ). Specifically, to extract the label context features for
each ROI, we first convert the multi-ROI atlas label map into S
binary label maps, L j

i,s,s = 1,. . .,S, where L j
i,s corresponds to

ROIs, with only voxels in ROIs having label 1 (positive) while
all other voxels having label 0 (negative). Then, from each
binary label map L j

i,s, we sparsely select 343 voxels within
a 11× 11× 11 neighborhood of the corresponding voxel of
x. Specifically, we set the central voxel as the origin of its
neighborhood and choose every other voxel in both x, y , and
z directions. Specifically, under this coordinate system, we,
respectively, select voxels on coordinates of −5, −3, −1, 0, 1,
3, and 5 in each direction to serve as label features. Finally, a
total of 125×S voxels are sampled, wherein their label values
serve as local label context features in our work.
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Integration: By incorporating both local appearance fea-
tures and label context features into a supervised learning
framework, the random forests learning can help identify
the most informative features, as well as nonlinear mapping
that connects features with the target label. In this way,
our method can exploit information more effectively in both
the (training) target image and the warped atlas label map,
compared to traditional multi-atlas based or learning-based
labeling methods.

2.C. Single-ROI and multi-ROI labeling

2.C.1. Single-ROI labeling

To label a single ROI in a new target image, all atlases are
first nonrigidly registered onto the new target image, which
is similar to the traditional multi-atlas based methods. With
the one-to-many correspondence assumption,6,12 most multi-
atlas based methods locally search for several atlas patches
with the most similar appearances to the target patch, and
then combine labels of the searched atlas patches as the target
label. This nonlocal label propagation can effectively correct
for inaccurate registration. As a result, in the testing stage, we
also adopt this nonlocal strategy in our framework.

Specifically, for a target voxel x to be labeled, we first per-
form a local patch search in the aligned atlas image (e.g., I ji )
to select the top K atlas patches with similar appearance to
the target patch centered at x. Here, the centers of the K
selected atlas patches are indexed as ck(x),k = 1,. . .,K . (1) For
each voxel ck(x), its label context features can be extracted
from a local atlas label patch, centered at ck(x), in each of the
S binary label maps {L j

i,s,s = 1,. . .,S}, which are converted
from the warped atlas label map L j

i , as we mentioned. Then,
these S channels of label context features and one channel
of appearance features, computed from the local target patch

(centered at x of the target image), can be combined as a feature
representation of target voxel x. (2) Afterward, we apply the
learned atlas-specific multi-channel forest Fi to estimate the
label probability of this target voxel x. (3) Since each of K
selected atlas patches, centered at ck(x), will produce one
label probability, we finally obtain K label probabilities for
this target voxel x. We can then simply average them to obtain
a final label for the target voxel x.

Note that, using the above step, each aligned atlas can use its
own learned multi-channel forest for labeling the target image
independently. Then, the labeling results from all N atlases can
be further averaged to obtain the final labeling result for the
target image. To increase the efficiency of voxel-wise labeling
for the target image, we apply our method only to the voxels
that receive votes from the warped atlas label maps. Figure 2
gives an illustration of our single-ROI labeling method.

2.C.2. Multi-ROI labeling

The extension from single-ROI labeling to multi-ROI
labeling is straightforward. For each target voxel to be labeled,
we first use labels of corresponding voxels, in the aligned
atlases (determined by local patch matching), to find a set of
candidate labels for this voxel. Then, we apply only the ROI
classifiers responsible to those candidate labels for estimating
the label probabilities of the target voxel, while all other
ROI classifiers are excluded and their corresponding label
probabilities are simply set to zero. By evaluating every voxel
in the target image, we can obtain S single-ROI labeling maps.
To fuse these single-ROI labeling maps into one multi-ROI
labeling map, the label of each target voxel is assigned by the
one with maximum probability across all different single-ROI
label maps. Compared with the case of performing all ROI
classifiers in every target voxel, our method of using only
the selected ROI classifiers according to the candidate labels

F. 2. A diagram for single-ROI labeling with our proposed atlas-guided multi-channel forest learning.
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F. 3. A general diagram of multi-ROI labeling.

can significantly improve both computational efficiency and
labeling accuracy. Figure 3 gives an illustration of our multi-
ROI labeling method.

2.D. HMCCM

In the atlas-guided multi-channel forest, we propose
utilizing the aligned atlas label map to provide spatial context
information of labels for better labeling a target image. After
applying our trained atlas-specific multi-channel forest to the
target image, we can obtain a label probability map, which
contains more relevant label context information (than the
aligned atlas label map) for the target image. Motivated by this
observation, we further update the label context information
from the newly obtained (tentative) label probability map to
learn the next multi-channel forest for labeling refinement.
By iterating this procedure, a sequence of classifiers (random
forests) can be learned to iteratively improve the labeling result
of the target image.

The initial idea of this type of iterative classification can be
traced back to the auto-context model.19 In the auto-context
model, the label probability map obtained by the classifier,
in the previous layer, is used as contexture information for
learning new classifiers to improve the labeling accuracy.
Specifically, for each voxel of interest in the target image, the
probabilities, at sparse context locations of the previous label

probability map, are extracted as context features to assist
the refinement of labeling in the next iteration. To increase
the robustness of context features to noise, Seyedhosseini and
Tasdizen22 applied a set of linear filters (e.g., Gaussian filters)
on the label probability map of the target image to obtain the
corresponding multi-scale label probability maps. Then, the
multi-scale context features are extracted from these maps. In
addition, Kim et al.23 indicated that the texture information
of the label probability map is more useful than simple
voxel-wise values for improving classification. Accordingly,
considering the capacity of Haar-like features in effectively
extracting multi-scale texture information, we extract Haar-
like features from the label probability map to characterize the
spatial context information of the label for the target voxel.
In the following paragraphs, we detail the training and testing
stages of HMCCM in the case of multi-ROI labeling, as also
shown in Fig. 4.

2.D.1. Training

In the initial layer, for each atlas (e.g., the ith atlas),
we first train a set of atlas-specific multi-channel forests
{F1

i,s,s = 1,. . .,S}, each of which corresponds to each ROI s,
and integrates multi-channel features from both training image
and multiple binary (single ROI) label maps of the aligned
atlas. Then, by applying this set of trained multi-channel
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F. 4. HMCCM. The iterative training procedure for the ith atlas is described.

forests F1
i,s,s = 1,. . .,S to each training image, a set of initial

label probability maps P1= {P1
s |s = 1,. . .,S} can be obtained.

In the second layer, we can now extract the spatial context
information of a label from the set of initial label probability
maps P1, instead of binary label maps of the aligned atlas.
Specifically, for each target voxel x in the target image, Haar-
like features are extracted in the local patch C(x) centered at x
from each label probability map P1

s, s = 1,. . .,S, to characterize
the multi-scale label context features around the target voxel
x. (Note that, in this study, for obtaining large-scale label
context information, we adopt a large local patch with size of
31×31×31.) Then, we combine these updated label context
features with the appearance features of the target image
to retrain a next set of atlas-specific multi-channel forests
{F2

i,s,s = 1,. . .,S}, which can be used again to estimate a next
set of new label probability maps P2 = {P2

s |s = 1,. . .,S} for
each training image. In each of the following layers, the label
context features are updated from the set of label probability
maps computed in the previous layer, and then are combined
with the appearance features of the target image to train a
next set of atlas-specific multi-channel forests (corresponding
to each ROI). Finally, after training totally O layers, we
can obtain O subsequent sets of atlas-specific multi-channel
forests, {Fo

i,s,s = 1,. . .,S}, o= 1,2,. . .,O.

2.D.2. Testing

For a new (test) target image H t, each target voxel is
layer-wisely tested by the multiple sets of trained atlas-

specific multi-channel forests {Fo
i,s,s = 1,. . .,S}, o= 1,2,. . .,O.

Specifically, for each atlas (e.g., the ith atlas), we first extract
appearance features from the (test) target image H t and the
spatial label context features from the aligned atlas, then use
the first layer of trained atlas-specific multi-channel forests
{F1

i,s,s = 1,. . .,S} to estimate the label probability of each
target voxel, and finally obtain the initial label probability
maps Pt,1 = {Pt,1

s |s = 1,. . .,S} for the test image H t. In the
following layer, we update the Haar-like features from the
label probability maps of the previous layer as spatial label
context features. Then, these updated label context features are
combined with the appearance features of the test image and
further input to the set of trained atlas-specific multi-channel
forests of the current layer to obtain a refined set of label
probability maps for the test image. This procedure is iterated
until reaching the last layer and until the final label probability
maps for the test image (with the ith atlas) are obtained. The
labeling results from all N atlases will then be averaged to
produce the final labeling result.

3. EXPERIMENTS

In this section, we apply our proposed method to the
LONI_LPBA40 dataset24 and IXI dataset (https://www.brain-
development.org) to evaluate its performance in ROI labeling.
For comparison, we also apply those popular learning-based
labeling methods, i.e., standard random forests (SRF)16 and
auto-context model (ACM).19 Also, in comparison with multi-
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F. 5. The influence of using different appearance patch size in labeling 12 representative ROIs in the LONI_LPBA40 database.

atlas based labeling methods, we apply the conventional patch-
based methods by nonlocal patch based labeling propagation
(nonlocal PBL)12 and the recently proposed, sparse patch-
based labeling propagation (sparse PBL),8,13 to the two same
datasets. To quantitatively evaluate the labeling accuracy,
we use the dice similarity coefficient (DSC) to measure
the overlap degree between automatic labeling and manual
labeling of each ROI.

For all images in the LONI_LPBA40 and IXI datasets,
three standard preprocessing steps are applied, including (1)
skull-stripping by a learning-based meta-algorithm,25 (2) N4-
based bias field correction,26 and (3) histogram matching
to normalize the intensity range. To align each atlas image
with the (training or test) target image,  first performs
affine registration in the FSL toolbox,27 with 12 degrees of
freedom and the default parameters (i.e., normalized mutual
information similarity metric, and search range ±20 in all
directions). Then, diffeomorphic Demons11 is performed for
deformable registration, with the default registration parame-
ters (i.e., smoothing sigma 1.8, and iterations in low, middle,
and high resolutions as 15, 10, and 5). In the experiments, we
use leave-one-out cross-validation to evaluate the performance
of our method. For each test image, all the other images are
split into two equal parts: one used for training, and the other
used for an atlas image set.

We use the standard random forests learning algorithm16

to train multi-channel forests in our proposed method.
Specifically, in the training stage, we train 20 trees for each
multi-channel forest. The maximum tree depth is set to 20,
and the minimum number of samples in the tree leaf node is
set as 4. Also, in the training of each tree node, 1000 Haar-like
features from the (training) target image are tested, while, in
the HMCCM, 500 Haar-like features from each ROI-specific
label probability map are tested. In the testing stage, the output
of each multi-channel forest is the average of probability
predictions from all the individual trees. Generally, for the

nonlocal strategy in our method, we set the number of nearest
atlas voxels as 5.

3.A. Experiments on LONI_LPBA40 dataset

3.A.1. Data description

LONI_LPBA40 dataset consists of 40 T1-weighted MR
brain images of size 220 × 220 × 184 from 40 healthy
volunteers, each with 54 manually labeled ROIs (excluding
cerebrum and brainstem). Most of these ROIs are within the
cortex. This dataset is provided by the Laboratory of Neu-
roImaging (LONI) from UCLA.28 The intensity normalization
of each brain image is performed by histogram matching
before labeling, where the MR brain image of the first subject
is used as the template for histogram matching. We use leave-
one-out cross-validation to evaluate the performance of our
method, by using 20 images for training and 19 images as
atlas images in each fold.

3.A.2. Influence of components in the proposed
method

In this section, we analyze the effects of patch size and
three main components in our method: (1) atlas-guided spatial
label context information, (2) nonlocal strategy in the testing
stage, and (3) HMCCM.

3.A.2.a. Evaluation of patch size. In our method, two
types of patches (appearance patch and label patch) are
respectively extracted from the target appearance image and
the aligned atlas label image to represent the target voxel.
Thus, we, respectively, evaluate the influence of two patch
sizes on labeling performance. In order to evaluate the
influence of patch size on labeling ROIs with different size,
12 ROIs with different volumes are selected. To be concrete,
these ROIs are the left and right inferior frontal gyrus (L/R
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F. 6. The influence of using different label patch size in labeling 12 representative ROIs in the LONI_LPBA40 database.

IFG), left and right precentral gyrus (L/R PG), left and right
middle orbitofrontal gyrus (L/R MOG), left and right superior
occipital gyrus (L/R SOG), left and right putamen (L/R PT),
and left and right hippocampus (L/R HP), respectively. The
L/R IFG and PG volumes contain about 25 000 voxels, L/R
MOG and SOG volumes contain about 10 000 voxels, and
L/R PT and HP volumes contain about 5000 voxels. Note
that the image resolution of the LONI database is 1× 1
×1 mm3.

To compare the labeling performance with different appear-
ance patch size, we vary the patch size from 3× 3× 3 to
15×15×15 mm3. Figure 5 shows the DSCs of 12 ROIs using
SRF without incorporating the label features. It is clearly seen
that, for large ROIs (L/R IFG, PG, MOG, SUG), using the
larger appearance patch size leads to better performance. By
varying the appearance patch size from 3×3×3 to 15×15×15,
the DSCs of L/R IFG, PG, MOG and SOG, respectively, arise
from 61.4% to 71.5%, 61.3% to 70.2%, 62.2% to 71.8%,
47.1% to 56.5%, 75.3% to 83.9%, and 77% to 82.6%. When
the appearance patch size is larger than 11× 11× 11, the
performance becomes stable. On the other hand, for the small
ROIs (L/R PT, HP), stable DSCs have been obtained with
patch size 9× 9× 9. It is worth noting that, when using a
large appearance patch size (e.g., 15×15×15), the labeling
performances of small ROIs are still kept stable and do not
descend, indicating that large appearance patch size is also
beneficial for labeling small ROIs.

Similar to the process for the appearance patch size, we
also vary the label patch size from 3×3×3 to 13×13×13

in our SAMCF framework. In this experiment, we set the
appearance patch size as 11×11×11 mm3, which is proved to
be the optimal in the previous experiment. Figure 6 shows the
DSCs of the 12 ROIs with different label patch size. We can
see similar results with those of appearance patch sizes. The
larger the patch size is, the better the labeling performance is.
Also, a large patch size does not lead to a decrease of labeling
performance for small ROIs. To balance performance in ROIs
with different volumes, both appearance and label patches
with size of 11×11×11 mm3 are used to label all ROIs in the
following experiments.

3.A.2.b. The effectiveness of atlas-guided random forest.
In evaluation of atlas-guided spatial label context information,
we compare the SRF (that does not use spatial label context
information) with both the single atlas-guided multi-channel
forest (SAMCF) and the multiple atlas-guided multi-channel
forest (MAMCF). Additionally, in order to analyze the effect
of label information of multiple ROIs, SAMCF (multi-ROI),
relative to single ROI of SAMCF [the SAMCF with only
single-ROI label features, namely, SAMCF (single ROI)], is
also evaluated. Specifically, for SAMCF (single ROI) and
SAMCF (multi-ROI), we select 20 subjects as the training
images, one subject in the remaining 20 subjects as atlas,
and the rest of the 19 subjects as the testing images. For fair
comparison, for both SRF and MAMCF (multi-ROI), we use
the same 20 training images and also test on the same 19
images as SAMCF (multi-ROI).

Table I lists the mean and standard deviation of DSC on all
54 ROIs for SRF, SAMCF (single ROI), SAMCF (multi-ROI),

T I. The mean and standard deviation of DSCs of 54 ROIs on LONI_LPBA40 dataset, produced by SRF,
SAMCF (single ROI), SAMCF (multi-ROI), and MAMC (multi-ROI), respectively.

Method SRF SAMCF (single ROI) SAMCF (multi-ROI) MAMCF (multi-ROI)

DSC (%) 72.45±4.39 79.67±4.35 80.37±4.32 81.51±4.27
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F. 7. The effectiveness of using atlas-guided spatial label context information in labeling each of 54 ROIs in the LONI_LPBA40 dataset.

and MAMCF (multi-ROI), respectively. It can be seen that the
MAMCF (multi-ROI) method achieves the highest measure
(81.51%±4.27%). In the meanwhile, SAMCF (multi-ROI)
(79.67%±4.35%) also achieves 7.19% increase of the average
DSC over SRF (72.48%± 4.36%). These results indicate
that the atlas-guided spatial label context information is
useful to improve the labeling performance. Compared with
SAMCF (single ROI) (79.53%± 4.53%), SAMCF (multi-
ROI) (80.37%±4.32%) achieves better performance, which
indicates that multi-ROI label information is more beneficial

to labeling than only using single-ROI label information.
Unless explicitly stated, our methods adopt the multi-ROI
label information in the following experiments. In Fig. 7, we
further show the mean DSC of each of 54 ROIs by SRF,
SAMCF (single ROI), SAMCF (multi-ROI), and MAMCF
(multi-ROI). It is shown that the use of atlas-guided spatial
label context information consistently improves the labeling
performance in all 54 ROIs. By performing the paired
Student’s t-test, compared with SRF, our method SAMCF
(single ROI), SAMCF (multi-ROI), and MAMCF (multi-ROI)

F. 8. The ROC of ROI labeling results by SRF and MAMCF, for the 8 selected ROIs with small volumes from the LONI_LPBA40 dataset.
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T II. The mean and standard deviation of DSCs of 54 ROIs on the
LONI_LPBA40 dataset, produced by SAMCF with 1, 5 and 10 nearest atlas
voxels selected in the testing stage.

Method SAMCF (Num=1) SAMCF (Num=5) SAMCF (Num=10)

DSC (%) 80.37±4.32 80.82±4.30 80.98±4.29

obtain statistically significant (p < 0.05) improvement on 41,
42, and 51 ROIs, respectively. Over all the ROIs, compared
with SRF, SAMCF (single ROI), and SAMCF (multi-
ROI), MAMCF (multi-ROI) obtains statistically significant
improvements with p-values of p < 0.0001, p= 0.0066, and
p= 0.022, respectively.

In order to further analyze the performance of proposed
method in segmentation, we also provide the ROC curve
analysis for 8 typical ROIs with relatively small volumes from
the LONI_LPBA 40 database,7 which are relatively difficult
to segment. These eight selected ROIs include left (L) MOG,
lateral orbitofrontal gyrus (LOG), gyrus rectus (GR), SOG,
cuneus (CN), parahippocampal gyrus (PHG), PT and HP in
the left brain. ROI curves of two methods, SRF and MAMCF
(multi-ROI), for these eight selected ROIs are shown in Fig. 8.
In terms of AUC (the area under the ROC curve), for these eight
selected ROIs, SRF and MAMCF (multi-ROI), respectively,
obtain (0.853, 0.922), (0.82, 0.903), (0.878, 0.91), (0.806,
0.908), (0.776, 0.848), (0.89, 0.928), (0.933, 0.951), and
(0.895, 0.918). Compared with SRF, our method [MAMCF
(multi-ROI)] obtains much higher AUC over all these eight
selected ROIs.

3.A.2.c. Nonlocal strategy in brain labeling. In our
method, we adopt the nonlocal strategy to search top K
matching label patch with target patch from the aligned atlas
for labeling. In the evaluation of nonlocal strategy in brain

T III. The mean and standard deviation of DSCs of 54 ROIs on
LONI_LPBA40 dataset, produced by SRF, SRF+ACM, SRF+HSCCM, and
SRF+HMCCM, respectively.

Method SRF SRF+ACM SRF+HSCCM SRF+HMCCM

DSC (%) 72.48±4.36 73.83±4.47 77.11±4.41 77.99±4.38

labeling, we take SAMCF method as example and respectively
set the number K of nearest atlas voxels as one, five, and ten.
The mean and standard deviation of DSC by SAMCF with one,
five, and ten nearest atlas voxels selected in the testing stage
are shown in Table II. It is shown that, when we fuse the label
information from ten nearest atlas voxels, SAMCF achieves
the highest average DSC as well as the minimum standard
deviation (80.98%±4.29%). Its average DSC is 0.61% higher
than SAMCF with the use of only one nearest atlas voxel.
It is evident that the use of a nonlocal strategy in the testing
stage can not only improve the labeling performance but also
enhance the robustness. Figure 9 shows the mean DSC of each
of 54 ROIs by SAMCF with a different number of nearest atlas
voxels. It is clear that the use of a nonlocal strategy consistently
improves the performance in all 54 ROIs.

3.A.2.d. Haar-like multi-ROI context model. Besides, in
contrast to HMCCM, we can also consider using the HSCCM
for extensive comparison. In Table III, we provide the
mean and standard of DSC on all 54 ROIs, produced
by SRF, SRF+ACM, SRF+HSCCM, and SRF+HMCCM,
respectively. (Note that ACM stands for auto-context model,
as mentioned above.) It can be observed that SRF+HMCCM
achieves the highest DSC (77.99%±4.38%) over any other
methods, followed by SRF+HSCCM (77.11% ± 4.41%),
SRF+ACM (73.83%±4.47%), and SRF (72.48%±4.36%).
Both SRF+HMCCM and SRF+HSCCM methods achieve

F. 9. The effectiveness of using nonlocal strategy in labeling each of 54 ROIs in the LONI_LPBA40 dataset.
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F. 10. The effectiveness of using HMCCM in labeling each of 54 ROIs in the LONI_LPBA40 dataset.

6.38% and 5.88% improvement over SRF+ACM, respectively.
In contrast, SRF+ACM gains only 1.35% increases over SRF.
These results indicate that the extraction of Haar-like features,
from the label probability maps, is more effective than the
simple extraction of traditional context information, from the
sparse voxels of label probability maps. In terms of multi-
class context information, the mean DSC of SRF+HMCCM is
0.88% higher than that of SRF+HSCCM, indicating that using
the context information from multi-ROI label probability
maps is more effective for labeling than using only the
single-ROI label context information. The detailed DSC ratios
on all 54 ROIs by SRF, SRF+ACM, SRF+HSCCM, and
SRF+HMCCM are shown in Fig. 10.

3.A.3. Comparison with existing multi-atlas based
methods

The second column of Table IV shows the mean and
standard deviation of DSC on 54 ROIs by (1) multi-
atlas based Majority Voting (MV); (2) two state-of-the-art

T IV. The mean and standard deviation of DSC (%) by MV, nonlocal
PBL, sparse PBL, MAMCF, and MAMCF+HMCCM on LONI_LPBA40 and
IXI datasets, respectively. Asterisks in MAMCF and MAMCF+HMCCM
rows denote that MAMCF and MAMCF+HMCCM have statistically sig-
nificant improvement over MV, nonlocal PBL, sparse PBL, as per paired
Student’s t-test.

Method LONI_LPBA40 IXI

MV 78.55± 4.33 76.64± 4.56
Nonlocal PBL 78.58± 4.32 75.85± 4.70
Sparse PBL 80.21± 4.32 77.4± 4.52
MAMCF 81.89± 4.25a 79.08± 4.41a

MAMCF+HMCCM 82.56± 4.22a 79.78± 4.34a

ap < 0.0001.

multi-atlas based labeling methods, i.e., nonlocal PBL
(Ref. 12) and sparse PBL,13 and (3) the proposed methods,
i.e., MAMCF and MAMCF+HMCCM. The average DSC
achieved by MV, nonlocal PBL, and sparse PBL for all
54 ROIs are 78.55%±4.33%, 78.58%±4.32% and 80.21%
±4.32%, respectively, which are lower than 81.89%±4.25%
achieved by MAMCF and 82.56% ± 4.22% achieved by
MAMCF+HMCCM. This comparison indicates the impor-
tance of learning a nonlinear classifier to fuse information from
both the target image and the atlas label map. Figure 11 further
compares our methods (MAMCF and MAMCF+HMCCM)
with MV, nonlocal PBL and sparse PBL on each of
54 ROIs. In terms of average performance over all the
ROIs, compared with MV, nonlocal PBL, and sparse PBL,
both MAMCF and MAMCF+HMCCM obtain statistically
significant improvements (p < 0.0001).

3.A.4. Comparison with existing learning-based
methods

We also compared our methods with two learning-based
methods. The second column of Table V shows the average
DSC ratios achieved by standard random forests (SRF) and
also SRF+HMCCM for all 54 ROIs, which are 72.48%
± 4.36% and 73.83%± 4.47%, respectively. Our methods,
MAMCF (81.89% ± 4.25%) and MAMCF+HMCCM
(82.56% ± 4.22%), outperform these two learning-based
methods, revealing the effectiveness of incorporating the
guidance of the atlas label map for the learning-based
labeling procedure in our method. Figure 12 shows the
detailed DSC on each of 54 ROIs by SRF, SRF+HMCCM,
MAMCF, and MAMCF+HMCCM. In terms of average
performance over all the ROIs, compared with the baseline
method SRF, SRF+ACM, MAMCF, and MAMCF+HMCCM
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F. 11. Comparison of performance of our proposed MAMCF and MAMCF+HMCCM methods and three multi-atlas based labeling methods in labeling
each of 54 ROIs from LONI_LPBA40 dataset. Each green star “*” denotes that MAMCF+HMCCM has significant improvement over all other methods (with
P < 0.05) in the particular ROI. Also, a green star in the left of “/” denotes significant improvement on the left ROI, while a green star in the right of “/” denotes
significant improvement on the right ROI.

obtain statistically significant improvements (p < 0.0001).
In addition, compared with our previous method21 (81.35%
±4.35%), both MAMCF and MAMCF + HMCCM achieve
the statistically significant improvements with p= 0.017 and
p= 0.011, respectively.

3.B. Experiments on IXI dataset

3.B.1. Data description

We use a subset of 30 images in the IXI dataset, containing
manual annotations of 80 structures (excluding cerebrum and
brainstem). The size of each image is 256×256×198. Again,
the intensity normalization of each brain image is performed
by histogram matching before labeling, where the MR brain
image of the first subject is used as a template for histogram

T V. The mean and standard deviation of DSC (%) by SRF,
SRF+HMCCM, MAMCF, and MAMCF+HMCCM on LONI_LPBA40 and
IXI datasets, respectively. Asterisks in MAMCF and MAMCF+HMCCM
rows denote that MAMCF and MAMCF+HMCCM have statistically signifi-
cant improvement over SRF, SRF+ACM, as per paired Student’s t-test.

Method LONI_LPBA40 IXI

SRF 72.48± 4.36 72.09± 4.98
SRF+ACM 73.83± 4.47 74.53± 4.49
Previous work 81.35± 4.35 —
MAMCF 81.89± 4.25a 79.08± 4.41a

MAMCF+HMCCM 82.56± 4.22a 79.78± 4.34a

ap < 0.0001.

matching. We use leave-one-out cross-validation to evaluate
the performance of our method by using 15 images for training
and the other 14 images as atlas images in each fold.

3.B.2. Comparison with existing multi-atlas based
methods

The third column of Table IV shows the mean and standard
deviation of DSC on all 80 ROIs in the IXI dataset by MV,
nonlocal, sparse PBL, MAMCF, and MAMCF+HMCCM.
It can be observed that our MAMCF+HMCCM (79.78%
±4.34%) and MAMCF (79.08%±4.41%) methods are ranked
top, followed by sparse PBL (77.4%±4.52%), MV (76.64%
±4.56%), and nonlocal PBL (75.85%±4.7%). This denotes
that our methods consistently outperform the multi-atlas based
labeling methods. In terms of average performance over all the
ROIs, our MAMCF and MAMCF+HMCCM methods have
significant improvement (p < 0.0001) over MV, nonlocal PBL,
and sparse PBL, respectively. Also, Fig. 13 shows the detailed
DSC on each of 80 ROIs in IXI dataset by MV, nonlocal,
sparse PBL, MAMCF, and MAMCF+HMCCM.

3.B.3. Comparison with existing learning-based
methods

We further compare our method with the two learning-
based methods in the IXI dataset. The third column of
Table V shows the average DSC achieved by SRF (72.09%
± 4.98%) and SRF+ACM (74.53%± 4.49%) for all ROIs.
Our MAMCF (79.08% ± 4.41%) and MAMCF+HMCCM
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F. 12. Comparisons between the proposed MAMCF and MAMCF+HMCCM methods and two other learning-based labeling methods on each of 54 ROIs
from LONI_LPBA40 dataset. See Fig. 11 for description of the green stars.

(79.78%±4.34%) methods outperform other learning based
methods, SRF (72.09%± 4.98%) and SRF+ACM (74.53%
± 4.49%). Figure 14 shows the detailed DSC on each of
80 ROIs in IXI dataset by SRF, SRF+ACM, MAMCF, and

MAMCF+HMCCM. In terms of average performance over all
the ROIs, compared to the baseline method SRF, SRF+ACM,
MAMCF, and MAMCF+HMCCM obtain statistically signif-
icant improvements (p < 0.0001).

F. 13. Comparisons between the proposed MAMCF and MAMCF+HMCCM methods and three multi-atlas based labeling methods on each of 80 ROIs in
IXI dataset. See Fig. 11 for description of the green stars.
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F. 14. Comparisons between the proposed MAMCF and MAMCF+HMCCM methods and two other learning-based labeling methods on each of 80 ROIs in
IXI dataset. See Fig. 11 for description of the green stars.

4. DISCUSSION AND CONCLUSIONS

Learning-based methods and multi-atlas based methods
have been widely applied to a large variety of medical
image segmentation problems. In this work, we focus on the
development of a new labeling method, which can effectively
combine the advantages of both multi-atlas based labeling
methods and learning-based labeling methods, applied to
automated human brain labeling. Multi-atlas based label-
ing methods take advantage of similarities between image
intensity patches to propagate labels from warped atlases
to the target image. These methods allow the selection of
few good candidates (i.e., the most similar patches) for label
estimation. However, the definition of patch-based similarity
is often handcrafted which may not be effective for labeling
all types of brain structures. In contrast to these methods,
the learning-based labeling methods aim to learn the mapping
between image intensity patches and the corresponding labels.
In the testing stage, these methods label a target image based
on only the appearance information, without utilizing the
label information from the warped atlases. In our method,
label features are also extracted from the wrapped atlas and
then combined with local appearance features of the target
image as input to learn the nonlinear mapping between image
intensity patches and their corresponding labels. In this way,
our method considers not only image appearance information

but also the label information of warped atlases during the
learning procedure, which eventually improves the labeling
performance compared to the conventional learning-based
methods. In order to effectively and efficiently use atlas
label information, a classifier is learned for each atlas based
on its label map. In the testing stage, the labeling results
from all atlases are fused for final labeling. Furthermore,
the HMCCM is also proposed to enhance the structural and
label context information of the target image. Specifically, we
use Haar-like features to iteratively extract multi-scale label
context information from the tentatively estimated multi-ROI
label probability maps of the target image, which gradually
improves the labeling results.

The work of Zikic et al.18 is most closely related to
our work, which also combines appearance features of the
target image with the atlas label features to learn classifiers.
However, the difference between our method and Zikic et al.’s
method lies at different uses of atlas label features. Zikic
et al. extracts label features from the population mean atlas,
while our method extracts label features from each warped
atlases. Because inter-subject variations could be large in
the MR brain images, brain structural details could be lost
in the population mean atlases, thus hindering the accurate
labeling of brain. Moreover, Zikic et al.’s method learns a
strong classifier (random forest) on every single brain image,
which is prone to overfitting. In our method, classifiers are
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learned based on a set of training images, thus not suffering
this overfitting problem. However, it has to be indicated
that their method is faster, due to the reduced time in atlas
registration (only once), while our method needs to perform
image registration between each atlas and the target image.
Compared to the ACM proposed by Tu and Bai,19 our
presented HMCCM extracts Haar-like features, which contain
richer contexture information. Experiment results confirm the
superiority of our HMCCM model over the conventional
ACM.

The experiments on two public T1-weighted MR images
datasets (LONI_LBPA40 and IXI) have shown that the
proposed method can perform high-quality labeling of human
brain MR images. To capture appearance information around
each voxel, the patch size is important. If the patch size
is too small, useful information may be lost. On the other
hand, if the patch size is too large, noisy and useless
information could be included. In our proposed method, due
to the built-in feature selection mechanism in random forests,
the useful features in the patch can be preserved while the
useless information is filtered out. As shown in Figs. 5 and
6, although a large patch size is used for both intensity
and label images, the performance of our method does not
descend, thanks to the feature selection mechanism in random
forests.

Our method utilizes the label information from multiple
warped atlases for classifier training, which shows a better
performance than the same information from a single atlas.
Table I compares the results obtained by label information
of a single atlas (SAMCF) and multiple atlases (MAMCF),
respectively, which show that the latter could lead to a better
performance. Meanwhile, as shown in Table II, the use of
few good label patch candidates from a single atlas, i.e.,
SAMCF (number = 10), can also improve the performance.
In our method, the performance can be further boosted by
HMCCM.

In order to efficiently make use of label information of
multiple atlases, we learn a classifier for each atlas. In the
testing stage, we fuse the labeling results from all the atlases by
using major voting. However, since some atlases can be highly
different from the target image, using their label information
could potentially lead to wrong labeling results. To predict the
label of each voxel, only the results from the reliable atlas-
specific classifiers should be considered for obtaining the final
labeling result. Thus, one of our future works is to develop
a method to evaluate the reliability of each atlas-specific
classifier and then select only the reliable results for fusion.
Also, to increase the computational efficiency of proposed
method, the nonrigid registration method can be replaced
with a linear registration method, and the corresponding
performance will be evaluated. Finally, our method should
be also tested on segmenting some important subcortical
structures such as hippocampus.

Finally, multi-atlas based and learning-based methods have
been heavily used in many other segmentation problems, such
as CT head and neck segmentation29 and tooth segmentation.30

In our future work, we also plan to evaluate our method in those
applications.
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APPENDIX: LOCAL APPEARANCE FEATURES

Given a sampled voxel x, we extract the following local
appearance features from the (training) target image H:

1. Patch intensities within a 7×7×7 neighborhood C7,7,7,

H(x1), x1 ∈C7,7,7(x).
2. Outputs of the FODs,

H (x+u1)−H (x−u1).
3. Outputs of the SODs,

H (x+u1)+H (x−u1)−2H (x).
4. Outputs of 3D hyperplan filters,

Ψ1∗ (H (C3,3,1(x+u2))−H (C3,3,1(x−u2))).
5. Outputs of 3D Sobel filters,

Ψ2∗ (H (C3,3,1(x+u2))−H (C3,3,1(x−u2))).
6. Outputs of Laplacian filters,

x1∈Op(x)
(H (x1)−H (x)).

7. Outputs of range difference filters,

max
x1∈Op(x)

(H (x1))− min
x1∈Op(x)

(H (x1)).

8. The random 3D Haar-like features,

w1


x3∈Ca,b,c(x1)

H (x3)

− w2


x4∈Ca′,b′,c′(x2)

H (x4),x1,x2 ∈C11,11,11(x),

where Ca,b,c(x) denotes the cube centered at x with size of a
×b×c, u1= (r cos θsin φ,r sin θ cos φ,r cos φ) and u2= (0,0,1)
are offset vectors, r is the length of u1, θ and φ are two rotation

angles of u1,Ψ1=


1 1 1
1 1 1
1 1 1


and Ψ2=


1 2 1
2 3 2
1 2 1


are filter functions,

* denotes convolution operation, Op(x) denotes the set of p-
neighborhood voxels of x, and w1 and w2 are weight scalars.
Specifically, FODs and SODs detect intensity change along
a line segment. In this implementation, we use r ∈ {1,2,3},
θ ∈ {0,π/4,π/2,3π/4}, and φ ∈ {0,π/4,π/2}. 3D hyperplane
filters and 3D Sobel filters are the extensions of FODs and
SODs on the plane. Filters, along two other directions, are also
implemented. Laplacian filters are isotropic and detect second-
order intensity changes. The range difference filters compute
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the difference between maximal and minimal values in a given
neighborhood of each voxel. In this implementation, we set
the size of neighborhood p ∈ {7,19,27}. The random 3D Haar-
like features describe rich texture information of appearance
image by computing the sum value of intensities in the cube, or
difference of the sum values between cubes of different sizes
located at different positions. In this implementation, for each
Haar feature, we randomly select a,b,c,a′,b′,c′ from {1,3,5},
(w1,w2) from {(1,0), (1,−1)}, and the positions x1 and x2 of
two Haar cubes within the local neighborhood 7×7×7.
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