3,933 research outputs found

    Trigonal warping and Berry’s phase Npi in ABC-stacked multilayer graphene.

    Get PDF
    The electronic band structure of ABC-stacked multilayer graphene is studied within an effective mass approximation. The electron and hole bands touching at zero energy support chiral quasiparticles characterized by Berry’s phase Nπ for N-layers, generalizing the low-energy band structure of monolayer and bilayer graphene. We investigate the trigonal-warping deformation of the energy bands and show that the Lifshitz transition, in which the Fermi circle breaks up into separate parts at low energy, reflects Berry’s phase Nπ. It is particularly prominent in trilayers, N = 3, with the Fermi circle breaking into three parts at a relatively large energy that is related to next-nearestlayer coupling. For N = 3, we study the effects of electrostatic potentials which vary in the stacking direction, and find that a perpendicular electric field, as well as opening an energy gap, strongly enhances the trigonal-warping effect. In magnetic fields, the N = 3 Lifshitz transition is manifested as a coalescence of Landau levels into triply-degenerate levels

    Generalized Lifshitz-Kosevich scaling at quantum criticality from the holographic correspondence

    Full text link
    We characterize quantum oscillations in the magnetic susceptibility of a quantum critical non-Fermi liquid. The computation is performed in a strongly interacting regime using the nonperturbative holographic correspondence. The temperature dependence of the amplitude of the oscillations is shown to depend on a critical exponent nu. For general nu the temperature scaling is distinct from the textbook Lifshitz-Kosevich formula. At the `marginal' value nu = 1/2, the Lifshitz-Kosevich formula is recovered despite strong interactions. As a by-product of our analysis we present a formalism for computing the amplitude of quantum oscillations for general fermionic theories very efficiently.Comment: 18 pages, pdftex, 1 figure. v2: figure and few comments adde

    Casimir Force between a Small Dielectric Sphere and a Dielectric Wall

    Full text link
    The possibility of repulsive Casimir forces between small metal spheres and a dielectric half-space is discussed. We treat a model in which the spheres have a dielectric function given by the Drude model, and the radius of the sphere is small compared to the corresponding plasma wavelength. The half-space is also described by the same model, but with a different plasma frequency. We find that in the retarded limit, the force is quasi-oscillatory. This leads to the prediction of stable equilibrium points at which the sphere could levitate in the Earth's gravitational field. This seems to lead to the possibility of an experimental test of the model. The effects of finite temperature on the force are also studied, and found to be rather small at room temperature. However, thermally activated transitions between equilibrium points could be significant at room temperature.Comment: 16 pages, 5 figure

    Magnetic spectrum of trigonally warped bilayer graphene - semiclassical analysis, zero modes, and topological winding numbers

    Full text link
    We investigate the fine structure in the energy spectrum of bilayer graphene in the presence of various stacking defaults, such as a translational or rotational mismatch. This fine structure consists of four Dirac points that move away from their original positions as a consequence of the mismatch and eventually merge in various manners. The different types of merging are described in terms of topological invariants (winding numbers) that determine the Landau-level spectrum in the presence of a magnetic field as well as the degeneracy of the levels. The Landau-level spectrum is, within a wide parameter range, well described by a semiclassical treatment that makes use of topological winding numbers. However, the latter need to be redefined at zero energy in the high-magnetic-field limit as well as in the vicinity of saddle points in the zero-field dispersion relation.Comment: 17 pages, 16 figures; published version with enhanced discussion of experimental finding

    Thermal van der Waals Interaction between Graphene Layers

    Full text link
    The van de Waals interaction between two graphene sheets is studied at finite temperatures. Graphene's thermal length (ξT=v/kBT)(\xi_T = \hbar v / k_B T) controls the force versus distance (z)(z) as a crossover from the zero temperature results for zξTz\ll \xi_T, to a linear-in-temperature, universal regime for zξTz\gg \xi_T. The large separation regime is shown to be a consequence of the classical behavior of graphene's plasmons at finite temperature. Retardation effects are largely irrelevant, both in the zero and finite temperature regimes. Thermal effects should be noticeable in the van de Waals interaction already for distances of tens of nanometers at room temperature.Comment: enlarged version, 9 pages, 4 figures, updated reference

    Magnetic double refraction in piezoelectrics

    Full text link
    A new type of magneto-optical effect in piezoelectrics is predicted. A low frequency behavior of Faraday effect is found.Comment: 2 pages, to be published in Europhys. Lett

    Quantum Hall effects of graphene with multi orbitals: Topological numbers, Boltzmann conductance and Semi-classical quantization

    Get PDF
    Hall conductance σxy\sigma_{xy} as the Chern numbers of the Berry connection in the magnetic Brillouin zone is calculated for a realistic multi band tight-band model of graphene with non-orthogonal basis. It is confirmed that the envelope of σxy\sigma_{xy} coincides with a semi-classical result when magnetic field is sufficiently small. The Hall resistivity ρxy\rho_{xy} from the weak-field Boltzmann theory also explains the overall behaviour of the σxy\sigma_{xy} if the Fermi surface is composed of a single energy band. The plateaux of σxy\sigma_{xy} are explained from semi-classical quantization and necessary modification is proposed for the Dirac fermion regimes.Comment: 5pages, 3figure

    Surface-atom force out of thermal equilibrium and its effect on ultra-cold atoms

    Full text link
    The surface-atom Casimir-Polder-Lifshitz force out of thermal equilibrium is investigated in the framework of macroscopic electrodynamics. Particular attention is devoted to its large distance limit that shows a new, stronger behaviour with respect to the equilibrium case. The frequency shift produced by the surface-atom force on the the center-of-mass oscillations of a harmonically trapped Bose-Einstein condensate and on the Bloch oscillations of an ultra-cold fermionic gas in an optical lattice are discussed for configurations out of thermal equilibrium.Comment: Submitted to JPA Special Issue QFEXT'0

    Traversable wormhole in the deformed Ho\v{r}ava-Lifshitz gravity

    Full text link
    Asymptotically flat wormhole solutions are found in the deformed Ho\v{r}ava-Lifshitz gravity. It turns out that higher curvature terms can not play the role of exotic matters which are crucial to form a traversable wormhole, and external exotic sources are still needed. In particular, the exotic matter behaves like phantom energy if Kehagias-Sfetsos vacuum is considered outside the wormhole. Interestingly, the spherically symmetric setting makes the matter and the higher curvature contribution satisfy four-dimensional conservation of energy in the covariant form.Comment: 13 pages, 2 figures, version published in Phys. Rev.

    Quantum diffusion of dipole-oriented indirect excitons in coupled quantum wells

    Full text link
    A model for diffusion of statistically-degenerate excitons in (coupled) quantum wells is proposed and analysed. Within a microscopic approach, we derive a quantum diffusion equation, calculate and estimate the self-diffusion coefficient for excitons in quantum wells and derive a modified Einstein relation adapted to statistically-degenerated quasi-two-dimensional bosons. It is also shown that the dipole-dipole interaction of indirect excitons effectively screens long-range-correlated disorder in quantum wells. Numerical calculations are given for indirect excitons in GaAs/AlGaAs coupled quantum wells.Comment: To appear in Europhysics Letter
    corecore